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ABSTRACT
Reconfigurable accelerators, like CGRAs and dataflow architectures,
have come to prominence for addressing data-processing problems.
However, they are largely limited to workloads with regular par-
allelism, precluding their applicability to prevalent task-parallel
workloads. Reconfigurable architectures and task parallelism seem
to be at odds, as the former requires repetitive and simple program
structure, and the latter breaks program structure to create small,
individually scheduled program units.

Our insight is that if tasks and their potential for communication
structure are first-class primitives in the hardware, it is possible
to recover program structure with extremely low overhead. We
propose a task execution model for accelerators called TaskStream,
which annotates task dependences with information sufficient to
recover inter-task structure. TaskStream enables work-aware load
balancing, recovery of pipelined inter-task dependences, and recov-
ery of inter-task read sharing through multicasting.

We apply TaskStream to a reconfigurable dataflow architecture,
creating a seamless hierarchical dataflow model for task-parallel
workloads. We compare our accelerator, Delta, with an equivalent
static-parallel design. Overall, we find that our execution model can
improve performance by 2.2× with only 3.6% area overhead, while
alleviating the programming burden of managing task distribution.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; Data flow architectures; Heterogeneous (hybrid)
systems.
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1 INTRODUCTION
With improvements to general purpose processors slowing, recon-
figurable accelerators (aka. dataflow accelerators [30, 41, 43, 45, 61–
63], or CGRAs [16, 17, 26, 34, 35, 57, 60]) have become an increas-
ingly favorable option for meeting the needs of data-processing
workloads. Recently, multicore versions of these designs have seen
commercial traction, particularly for use in datacenters (e.g. [4, 5,
39, 68, 69]). The key attraction is their broad applicability across
workloads, due to their general computation datapaths and memory
access patterns.

While promising for generality, most reconfigurable architec-
tures remain fairly limited to regular computations. While many
forms of irregularity can be supported1, we focus on irregular paral-
lelism, also known as task parallelism: this occurs when a program’s
work is created and scheduled to execution resources dynamically,
based on runtime computations.

There are at least three clear benefits to supporting task paral-
lelism in reconfigurable accelerators. First, many workloads have
inherent data-dependences in forming parallel work (e.g. create
tasks for all outgoing edges of a graph’s vertex), so this enables
broader applicability. Second, sometimes the amount of work per
task can only be determined at runtime (e.g. number of elements
matched in a join), so dynamic assignment can balance load. Third,
many irregular workloads have multiple task types, where each
type stresses the system differently in terms of compute, memory,
network, or other resources (e.g. memory-bound graph aggregation
and compute-boundmultiplication in Graph Convolution Networks
- GCNs); running different task types in parallel can balance shared
resource usage.

Yet task parallelism is generally not supported on reconfigurable
accelerators, and instead, resources are assigned at coarse grain.
This is understandable, as such architectures are designed to ex-
ploit structure – i.e. patterns in the execution that occur through
time (temporal structure) or across units simultaneously (spatial
structure). For example, configuring a dedicated communication
path between two instructions exploits the temporal structure of
repeated communication; a vector operation exploits spatial struc-
ture. However, because tasks are traditionally assigned to resources
independently, the structure across tasks is lost, leading to severe
overheads: naïvely assigning tasks to cores would cause excess
reconfiguration; relying on traditional shared-memory inter-task
communication incurs high latency and traffic overheads.

Our goal is to enable efficient task parallelism on reconfigurable
accelerators. In principle, the information required to optimize
task-parallel programs to avoid inter-task communication could be

1E.g. supporting irregular memory [19, 48], or irregular control [62, 67].
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made available: tasks could be annotated with information that de-
scribes which data they use, and the hardware could take advantage
of structured communication patterns, like pipelining and multi-
casting. Performing this analysis in software would likely not be
profitable, especially in an accelerator system where tasks are short.
Our solution is to expose task-management and structured-access
as first-class primitives of the hardware’s execution model.
TaskStream Model: With these insights, we propose the
TaskStream execution model, which augments a reconfigurable
accelerator’s ISAwith primitives for dynamic task management and
structured access. In TaskStream, tasks and their dependences are
represented in a graph, and edges are annotated with opportunities
for structure recovery. Overall, TaskStream provides reconfigurable
accelerators with efficient support for tasks through three key
features: First, it provides a high-throughput task creation interface
from instructions in the datapath. Second, it provides load balance
support, informed by programmer’s knowledge of task type
distribution and task size (work-per-task). Third, it supports
dynamic data streaming to recover inter-task communication
structure, and dynamic task batching of reused inputs to recover
temporal and spatial locality structure.
Implementation and Evaluation: To implement TaskStream, we
augment a decoupled-spatial reconfigurable accelerator [66] with
TaskStream abstractions in software and hardware (called Delta).
Programmers express their programs with a hierarchical dataflow
representation, where TaskStream nodes are coarse grain tasks,
each containing dataflow instructions that define the task semantics.
We evaluate performance with a cycle-level simulator.

We chose five challenging task-parallel workloads with unique
opportunities for structured communication: K-nearest neighbor
(kNN), an ML-oriented database query, sparse matrix-multiply,
Cholesky decomposition and Graph Convolution Networks (GCN).

Overall, we achieve 81.3× speedup over multicore CPUs. Over
an efficient static-parallel CGRA baseline (without TaskStream),
we achieve 2.2× speedup, with load-balancing optimizations alone
yielding only 1.3× performance.
Contributions:
• Novel model for task parallelism for reconfigurable accelerators,
which enables a new class of structure-recovery optimizations.

• Hardware/software co-design to support three different classes
of communication patterns efficiently: 1. lightweight task cre-
ation, 2. inter-task streaming dependences with co-scheduling
of dependent tasks, 3. inter-task reuse by exploiting spatial or
temporal structure with batching.

• Evaluation against static and naïve task-parallel models, demon-
strating the value of structure recovery in irregular workloads.

Paper Organization:We first motivate and describe TaskStream
in Section 2. In Section 3, we apply TaskStream to a dataflow accel-
erator to create a hierarchical dataflow representation, describe the
mapping of our evaluated workloads, and discuss limitations and
possible extensions. Section 4 describes the accelerator hardware
implementation, and then Sections 5 and 6 provide methodology
and evaluation. Finally, section 7 describes the relationship to exist-
ing software and hardware systems that optimize for task locality.
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Figure 1: Opportunities in Naïve Task Parallelism

2 TASKSTREAM EXECUTION MODEL
We first motivate the principles of TaskStream by discussing op-
portunities to exploit certain forms of program structure. Then, we
will present our proposed TaskStream model, abstract from any
particular architecture implementation.

2.1 Opportunities for Structure Recovery
The context for our proposed system is a tiled multicore architec-
ture, in which a task scheduler assigns tasks to cores. We assume
a mesh-based network on chip (NoC), but optimizations apply to
other topologies. To elaborate our optimizations, we discuss three
program idioms from Figure 1, where locality structure is lost due
to exploiting task parallelism.
Variable-sized Tasks: A variety of task-parallel workloads have
task types2 whose amount of work is either data-dependent or
progressively changing over its instances. Figure 1a shows an ex-
ample where inner loop tasks have a data-dependent length, based
on B[i]. A naive task parallel model would assign the inner loop
tasks irrespective of the work involved in a task. Work-stealing is
possible, but requires extra inter-core communication latency and
bandwidth.

The opportunity here is to distribute tasks with the knowledge
of the work involved. In the example, core 1 gets the smallest and
second-largest task (i.e. with total work = 3+7 = 10), so that all cores
get similar total work. This model is synergistic with accelerators,
which have quite predictable execution times.
Coarse-grain Pipeline Reuse: A common behavior in data pro-
cessing algorithms is ordered dependences between one task and
another, for example where one task produces an array which the
other uses in the same order. Figure 1b demonstrates a global re-
duction example where each core gets a tile of data. In the NSAïve
task parallel implementation, all cores need to perform updates on
the reduction variable through memory.

2A “task type” is the static definition of a task, including computation and memory
accesses, while the dynamic instantiation of a task is a task instance.



TaskStream: Accelerating Task-Parallel Workloads by Recovering Program Structure ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

The opportunity here is to identify the ordered reuse, and
pipeline or stream the data from a producer to one or more
consumer tasks. This transforms the memory traffic into direct
network traffic, reduces shared-memory overhead from coherence,
and also allows overlapped execution of tasks for more concurrency.
In the example, the pipelined reduction can be performed without
accessing memory (except for writing the final value).
Coarse-grain Read Reuse: Another common idiom is when dif-
ferent subsets of tasks read the same data. If such tasks are not
scheduled together in time or space, the opportunity to exploit
this form of reuse can be lost. Figure 1c demonstrates this with
an algorithm that traverses and modifies a compressed sparse row
(CSR)-like data structure, and is representative of common algo-
rithms that rely on range-based indirection. Here the duplicates
in B are expected to create multiple tasks with shared read data,
providing an opportunity for reuse. A naïve task parallel model
schedules tasks without respecting locality, so tasks that access the
same data may not be scheduled on the same core or at the same
time. The reuse cannot be exploited to save network traffic and
cache/memory bandwidth.

Such coarse-grain reuse can be exploited by identifying tasks
that access the same data, and reordering them to execute at the
same time on different cores; the responses can then be multicast to
significantly reduce network traffic and memory bandwidth usage.
We call this optimization task batching.

An alternate opportunity, used in a variety of other contexts [6,
12, 18, 25, 27, 74], is to use a “spatial hint” to assign tasks that access
the same data to the same cores. While this reduces memory access
for data that fits in private cache, it also restricts the allowed sched-
uling locations, which could restrict load balancing optimizations.
We compare against spatialhint in evaluation.

2.2 TaskStream Model
TaskStream is a task-parallel execution model that adds sufficient
information to identify and exploit structure-recovery opportuni-
ties. In principle, TaskStream can be an extension for a variety of
architectures, but its simplicity and approach to load balance makes
it well-suited to reconfigurable accelerators (Section 3 discusses in-
tegration with a dataflow-based accelerator model). We first discuss
the basics, and then cover how each optimization is applied.
TaskStream Basics: A program in TaskStream is represented as
a set of nodes, one for each task type, and edges for inter-task
dependences. Edges are typed, and each type indicates the potential
for structure-recovery: creation (standard), streaming (for pipeline
reuse), and batching (read reuse). Tasks can be in one of three states:
1. Created: the arguments for a task instance are constructed on
the originating core; 2. Scheduled: the task is bound to execution
resources, 3. Executing: task computation is in progress.

Tasks are created when they receive a set of values for all in-
coming creation (standard) edges. Next, a task is scheduled to stor-
age/execution resources (e.g. buffer/core), after which it is assigned
a TaskID that represents this location; the TaskID may be returned
to the parent if a streaming communication will be established.
Tasks may only be scheduled to a core which is configured for its
task type. To convey the configuration information, each task node
is annotated with a coreMask: a bitmap that describes the legal

a. Task Creation b. Task Streaming

1
. E

xa
m

p
le

  for j: tstart[i]     
        to tend[j]:
    X += M[j]*A[j]

B[N] = {3,2,9,8}

   M[i] = i*2;
  for j: 0 to B[i]:

A[j] += M[i]

c. Task Batching

6,8
4,9
2,2
0,3

6,8
4,9
2,2
0,3

M=
110

M[i],B[i]

2
. T

as
kS

tr
e

am
 G

ra
p

h

Sizehint
 = B[i]

X
2
7
3
1

2
7
3
1

Stream Edge Args:
child TaskID, 

stream Bytes,
depDistance = 1

X
2
7
3
1

2
7
3
1

M=
111

T2
T1
T0

T4 T5
T3

T2
T1
T0

T4 T5
T3

B[i] Multicast 
locations

Unique
reqs

Batch Edge Args:
child TaskID,

DataID = B[i],
Bytes = N

Stream

(contains MBi)

2,N
1,N
0,N

2,N
1,N
0,N

for i: 0 to tiles:
for i: 0 to N:

Batch+
Stream

coreMask 
M

    A[Bi] = MBi+1
    MBi = M[Bi]

B[6] = {0,1,2,0,1,1}

 
for i: 1 to 6:
  for Bi: B[i] to B[i+N]:

B[6] = {0,1,2,0,1,1}

 
for i: 1 to 6:
  for Bi: B[i] to B[i+N]:

    A[Bi] = MBi+1
    MBi = M[Bi]

B[6] = {0,1,2,0,1,1}

 
for i: 1 to 6:
  for Bi: B[i] to B[i+N]:

6,8
0,3
6,8
0,3

core 1
6,8
0,3

core 1
4,9
2,2
4,9
2,2

core 2
4,9
2,2

core 2

Output from parent task-instance

Input to child 
task-instance

Input to parent task-instance

T4
T3
T4
T3

T1
T0
T1
T0

core1

T5
T2
T5
T2

core2 core3
Tasks assigned to:

T4
T3

T1
T0

core1

T5
T2

core2 core3
Tasks assigned to:

0
2
1
0

0
2
1
0

1
1

0
2
1
0

1
1

M=
001

M=
111

M=
111

Figure 2: TaskStream Graph Abstractions

mapping locations. Some task types can be co-located on the same
core, provided there are sufficient resources. Tasks that are not yet
ready to execute may be waiting on streaming or batched data, and
we call these tasks pending.

One phase of the program completes when all tasks are com-
pleted. A program may consist of multiple phases. Examples of a
TaskStream program phase are shown in Figure 2, where task types
are distinguished by color (and shading), and we discuss next.
Task Creation & Work-aware Load Balance: Figure 2a demon-
strates the basics, as well as annotations for load balancing. A single
task creation edge connects the outer-loop multiplication task, and
inner-loop accumulation. When two task nodes are connected by a
task creation edge, it means that some outputs from the source node
task are used to activate the creation edge and will be inputs to the
destination node task. In Figure 2, the interface for activations is
represented by task buffers, and the data order indicates the order
of producing and receiving tasks. The outer-loop task gets core
1 (coreMask:001) while accumulation gets the remaining 2 cores
(coreMask:110) because it has a ratio of B[i] times more work
compared to the outer-loop.

TaskStream provides annotations to aid load balancing at task
scheduling time. Task creation edges may be annotated with a
sizehint, which is a task argument that describes the relative
amount of work for the task. This enables a simple size-aware
scheduling policy, where a new task is assigned to the core with
the least cumulative work. In the example, B[i] is the number of
iterations of the inner loop, and is therefore used for that task’s
sizehint. The scheduler could then assign tasks of size 3, 8 to core
1 and tasks of size 2, 9 to core 2, resulting in a balanced load.
Task Streaming: To facilitate dynamic pipelining between tasks,
edges may be of task streaming type.When two nodes are connected
by such an edge, the output at the source node task triggers a
streaming communication with the assigned children (stored as
child TaskID). For a streaming edge, the programmer can specify
a dependence distance (depDistance), which allows developing a
streaming relationship between task-instances separated by a fixed
number of tasks. In the example, the depDistance is 1. To close
the communication, an end-of-stream message is sent when the
required number of bytes have been streamed in, this parameter
must be specified by the producer. To set up the communication,
start-of-stream handshaking messages are exchanged to ensure
that the children are ready, and producers have their scheduling
information. The data is streamed in between these messages.
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Figure 2b demonstrates the task streaming edge: here the depen-
dent instances of the reduction task type are scheduled in mutually
exclusive locations – this is required to ensure that tasks involved in
streaming are concurrently scheduled. When data is available at the
parent task, the start-of-stream message is sent to the destination
node and data will be streamed in. When finished, end-of-stream
messages will free resources.
Task Batching: To enable multicasting of shared reads, we im-
plement a task batching edge. This edge requires three parameters
when it is activated: DataID indicates whether the reads are to the
same data, TaskID indicates the dependent dynamic task, and bytes
indicates the length of these reads. The task scheduler can use this
information to record which tasks are dependent on the same reads,
and reorder them to schedule them together. The advantage is that
data can be multicast to all co-scheduled tasks.

Figure 2c demonstrates the task batching edge: here we split
the program into a CSR-traversal task and an addition task type.
The outputs from B[i] are batched, resulting in only 3 unique
requests instead of 6. For each unique request, the TaskIDs of the
corresponding batched tasks are shown in the “Multicast locations”
table. We are able to perform this reordering by exploiting the fact
that the addition tasks are commutative and can be executed in any
order without affecting correctness.

3 TASKSTREAM FOR RECONFIGURABLE
ACCELERATORS

Applying TaskStream to a reconfigurable accelerator naturally
creates a hierarchical-dataflow representation: one higher-level
dataflow of task management and communication, and one lower-
level dataflow of instruction execution. Here we describe the in-
tegrated abstractions of such a representation, the process of pro-
gramming, and mapping of evaluated workloads. Finally, we discuss
the limitations and possible extensions of our programming model.

3.1 Hierarchical TaskStream Dataflow

Decoupled Dataflow Background: We integrate TaskStream
with a decoupled-dataflow model for accelerators (e.g. [18, 19, 30,

41, 45, 62]). We provide a simplified description here.
In this model, computation and memory instructions are rep-

resented as nodes, edges represent ordered dependences between
instructions, and nodes fire on data arrival. Memory nodes are re-
ferred to as memory streams, as they encode patterns of memory
access (e.g. A[i] for i = 0 to N). Computation is decoupled frommem-
ory to allow for efficient prefetching, and memory and compute
nodes communicate with each other through “ports”. Ports are anal-
ogous to registers in a VonNeumann architecture, but have FIFO
semantics. Instruction nodes and ports are scheduled to dedicated
hardware resources by the compiler.

To execute a computation, the memory and compute nodes are
first configured. Execution begins when inputs are supplied through
ports, which can be consumed by memory nodes as parameters of
streams, or as inputs to the computation nodes.
Hierarchical Integration: TaskStream can be integrated on top of
dataflow abstractions: each task is represented as a set of instruction-
level dataflow nodes, and edges between tasks carry TaskStream
semantics (i.e. creation, streaming, batching). Figure 3 depicts this
hierarchical approach for an example program.

When a task is scheduled, its inputs are delivered to correspond-
ing ports, which triggers instruction-level execution. Tasks are then
executed in pipelined fashion in the order they are scheduled. The
instructions and memory prefetching of different tasks is inter-
leaved, which is possible because of the tight composition of the
instruction and task-level dataflow. Streaming inter-task commu-
nication also uses ports (shown as triangles in Figure 3); producer
ports at the parent deliver data to the consumer ports at the child
task. A consumer port must be “acquired” by a parent task before
communication can begin, as explained later.

Figure 3 shows an example streaming communication, where
the output port from the T1 task, B[i], can trigger the M[j] load
and the addition task (T2 and T3). The task arguments can be re-
ordered along the TaskStream edge using the spatial and temporal
scheduling policy, and hardware resource limitations will limit the
maximum reordering distance.
Task Protocol: Figure 3 also shows the task protocol for the exam-
ple, demonstrating all three task operations: scheduling, streaming
and batching. We refer to the figure as we detail the protocol.

Task Protocol – Scheduling: After a task is created, it is sched-
uled both spatially and temporally (step 1 and 2 in Figure 3). For
spatial scheduling, TaskStream checks whether any task argument
is annotated with sizehint, and the task is sent to the core with
the least cumulative work until now, and this value is incremented.
If no argument is annotated as sizehint, round-robin ordering
is used. To minimize the response traffic, tasks which only access
memory (e.g. T2 in Figure 3) are scheduled differently; they are
instead scheduled where the data is located (e.g. by determining
the shared cache bank of the start address).

Task instances (identified by their arguments) may either be
held in a ready state if all arguments are available, or in a pending
state otherwise. For example, in Figure 3, the T2 task is ready after
receiving B[i], however the T3 task will be in the pending state, as
it is still waiting on M[j]. In the pending case, the producer must
provide an explicit “acknowledgment” (ack) of data readiness to
trigger the task.
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Task Protocol – Streaming:Whenever there is data at the producer
port of a task streaming edge, an ack is sent to the child tasks
along with the producer port information (Figure 3, step 3). This
ack should trigger a check as to whether the child task can be
concurrently scheduled; this requires that the current task has
finished and the consumer port is free. When both conditions are
met: the child task is set ready and scheduled (Figure 3, step 4), the
consumer port is set busy (i.e. it is acquired), and the ack response is
sent back to start streaming (Figure 3, step 4, 5). After the last data
is sent, the producer sends another ack to close the communication
and free the remote port (Figure 3, step 8).

Task Protocol – Batching: Batched tasks will be held temporarily,
and those identified to have the same DataID will be scheduled
simultaneously across multiple cores; the responses of batched
requests are multicast to all co-scheduled tasks. Batched requests
also supply a bytes argument that indicates the length of the data
to be streamed. In Figure 3, step 3, ready acks are sent to all batched
tasks, which will then be scheduled on different cores (step 4). Then,
after the ack response is received from all cores and the tasks are
set for execution (step 5, 6), data will be multicast in step 7, before
the communication is closed (step 8).
Deadlock Prevention: During streaming inter-task communica-
tion, the ports involved must be acquired before data is sent, and
held until the stream is complete. This ensures that data for multiple
streams is not interleaved. Port acquisition has deadlock hazards,
which we describe, along with solutions, as follows:

Self-loop in the TaskStream Graph: Consider the scenario when
the parent and child tasks, setup for streaming communication,
are scheduled for execution on the same core. The child task may
never be able to lock the consumer port if the parent is already
using it, and the parent cannot release the producer port until the
streaming data is sent to the child, as it is waiting for the child to
get lock of the consumer port. Our solution is to allocate a mutually
exclusive set of resources/cores to the parent and child tasks. More
specifically, in the case that streaming exists within tasks of the
same type, tasks can form a dependence chain. We create virtual
partitions of the cores to divide the cores into a number of sets
equal to a maximum dependence-chain length. A child is always
scheduled to a different virtual partition than any of its parents.

Capturing multiple ports for multicast: For multicast, the parent
task needs to acquire multiple ports, one for each core. Here we
break the possibility of cyclic deadlock by ensuring the ports are
acquired in the order of core ID (a unique ID assigned to each core).

3.2 Programming
One of the key advantages of programming in TaskStream is that
it manages task scheduling at high performance, with only mod-
est programmer help. The process to port a C/C++ workload to
TaskStream programming model involves three steps: 1. Defining
task types and their functionality, 2. Determining the dependencies
among task types to form a task graph, and 3. Managing the start
and stop of a program phase. We will discuss each of these in detail
below, using Cholesky as an example, as depicted in Figure 4.
Defining Task Types: When porting a program, a code region
should be assigned to a new task type if it performs different com-
putations, the same computations at a different rate, or has different
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Figure 4: Cholesky Implemented in TaskStream (for brevity,
only two outer loop iters. run in parallel in one program phase)

Table 1: Node properties in Task Graph

Description of Node Property

coreMask Bitmask indicating cores a task may be assigned to.
sizehint Task argument that indicates relative task length.
spatialhint Task argument indicating a preferred core (for locality)

locality behavior. For example, two computations may either be
combined into a single task so that the task granularity is higher or
may be split if the data associated with two computations are not
expected to have similar locality behavior.

For each task type, the programmer first defines the instruction-
level dataflow graphs. The programmer assigns certain cores to that
task type using the coreMask, and may also define a task argument
as a sizehint or spatialhint. The node characteristics are as
defined in Table 1.

For the example in Figure 4a, Cholesky has three task types, one
for each loop nesting degree: 1. Point: performs only one inverse
and square root for every outer loop iteration. 2. Vector: performs
O(n) multiplication operations. 3. Matrix: performs O(n×n) multi-
plication and subtraction operations. Since the work required for
Point and Vector is much smaller than Matrix, the coreMask is set
to assign one core to both Point and Vector, while all other cores
are assigned to the matrix task. Figure 4d shows the mapping of
Cholesky to our accelerator, called Delta, which will be explained
in the next section.

Task granularity is also a significant choice. Smaller tasks may
suffer task management overheads, while larger ones are more
difficult to load balance. If the task-size distribution is too wide,
even the size-hint optimization may not be sufficient. Cholesky
is challenging to tile into tasks, because the iteration domain is
triangular. Therefore, we split the task into square and triangle
tiles (along the diagonal); these are still of relatively different sizes.
The new task types are Point, Vector-tile, and Matrix-tile. The tile
information is passed as arguments on the Point-to-Matrix edge.
Defining the TaskStream Graph: Next, the programmer uses
algorithmic knowledge to identify edges among task type nodes.
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Table 2: Edge properties in Task Graph

Description of Edge Property
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depDistance By comparing the distance (port), it identifies a task as paren-
t/child.

DataID ID used to batch shared-read data/requests
Bytes Either used as size for streaming or meta-data for batching

H
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TaskID Stores location where a task is buffered
Ack Ack buffer maintains TaskIDs of tasks whose ready signal is

waiting to be served
Sched Stores TaskIDs of child tasks, as identified using depDistance
SchedParent Stores TaskIDs of parent tasks, as identified using depDistance

These include determining whether any task computation is trig-
gering another computation (task creation), whether the tasks have
pipelined reuse among them, and whether there is shared read-data
among tasks. Another important component is to decide the task
arguments for a type and then create an edge interface from pro-
ducer ports at the source task to consumer ports at the destination
task. The list of supported edge characteristics is defined in Table 2;
we list hardware managed aspects as well, to make it clear what
the programmer needs to reason about.

In the Cholesky example in Figure 4c, there is a creation edge
from Point to Vector andMatrix-tile. There exists data dependencies
among multiple matrix tasks, hence there is a streaming edge from
theMatrix-tile task to itself. The dependence distance is the number
of matrix-tiles in the kth iteration of the outermost loop.

Finally, we need to limit the number of recursive tasks created
by the self-loop in Matrix-tile task – this is done by setting the
maximum dependence-chain length, determined based on hardware
resource limitations (the sensitivity to this length is studied in
Section 6). The program phase will end, shown as “barrier” in the
figure, after all dynamic tasks are complete.
Managing a Program Phase: A program phase starts when the
programmer pushes an explicit task of any type. The phase is com-
plete when all tasks have finished execution. Cholesky is initiated
by creating a task for the outer-loop point task.

3.3 Workload Mapping
Here we discuss how we implemented each of the four additional
evaluated workloads. Figure 5 shows examples (with only a
coreMask for 4 cores, for simplicity).
k-nearest neighbors: Figure 5a shows the TaskStream graph for
kNN search. For every query, a binary kd-tree is searched. When
the leaf node is reached, data associated with the leaf is accessed to
perform linear search (similar to Tigris [71]). We define two task
types: 1. Tree node: A tree traversal. Since each traversal will incur
long latencies to access pointers, we split it into small tasks that
compares with the current node and outputs the next tree node.
2. Leaf search: Here the query is searched linearly in a long vector
associated with the leaf. Many queries may search in the same leaf,
generating coarse-grained reuse. Hence, we separate the leaf load
task and add a Batch+streaming edge to the leaf search task.
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Figure 5: TaskStream Graphs for Evaluated Workloads

Graph Convolution Network (GCN): Figure 5b shows the
TaskStream graph for GCN. Every vertex accumulates its feature
vectors into its outgoing neighbors, and when all the incoming
feature vectors are received, the accumulated vector is multiplied
with a weight matrix. To enable flexible load distribution, we define
three task types: graph access, feature vector updates (together
performing aggregation) and matrix-vector multiplication. As
updates involve irregular accesses, we use spatialhint based
scheduling for atomic updates to ensure that remote accesses are
minimized. For accesses to the vertices with varying degrees, we
use sizehint based scheduling. For matrix-vector multiplication,
different graph vertices access the common weight matrix, creating
an opportunity for batching reuse (shown by the weight load task
and the Batch+Streaming edge). We store the weight matrix in the
private scratchpad, and multicast from there.
Database + Machine Learning: Figure 5c shows the TaskStream
for a Database/Machine Learning kernel from Gorgon [62], specif-
ically query 2. We define three task types: 1. Sort: Sort requires
sufficient work to utilize all resources. Moreover, it reuses its out-
puts as inputs to the next iteration of sort, and therefore, its output
cannot form pipelined communication with other dependent task
types. Hence, we treat the subsequent computation as another
phase, executed after a task barrier. 2. Join: requires O(n) compari-
son operations. 3. kmeans-groupby: requires O(#matched-rows*d)
operations to find the minimum distance. Since the work required
among Join and kmeans-groupby may be highly different depending
on the number of matched rows and the number of dimensions, we
assign 2 cores to Join and the rest to the kmeans-groupby task type.
These tasks are connected by the creation edge.
Sparse matrix multiply: Figure 5d shows the TaskStream for
sparse matrix-sparse matrix multiply. Here we use a tiled outer
product implementation (similar to SCNN [44]). We define a task
type as the product of a column of matrix 1 and a tile of matrix 2’s
corresponding row. Since different tiles of matrix 2’s row access a
common column, there is an opportunity of batching reuse (shown
by “Ld M1” and the Batch+Streaming edge). Moreover, we store
copies of matrix 2’s row and partial sums in the private scratch-
pad, and use spatialhint based scheduling to ensure that a task is
scheduled where its data is stored.
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3.4 Discussion of Limitations and Extensions

Our Programming Experience: After identifying tasks and de-
pendences, writing TaskStream code is not overly complex. For
programming TaskStream, we use a unified graph domain-specific
language for both the TaskStream and dataflow graphs. For refer-
ence, tiled-Cholesky on a static-parallel accelerator (REVEL [67]) is
163 lines of code, and the TaskStream version is 210 lines.
Adapting Task-parallel Programs: While we focus on special-
ized implementations, it is somewhat straightforward to adapt pro-
grams from languages with fork-join parallelism like Cilk [10]. The
essential idea is that whenever a child synchronizes with a par-
ent task using backward dependence in Cilk, in TaskStream, the
parent-task can create a successor task, and the child tasks will
now have a forward dependence to the successor task. This is pos-
sible because TaskStream allows pending tasks, where tasks are
waiting on arguments from dependent tasks. The child tasks can
communicate with the successor task using TaskID. Because this is
implemented in hardware, it puts a limit on the number of in-flight
tasks. In addition, various dataflow-inspired programming mod-
els [23, 28, 52, 59, 70] also rely on static inter-task dependencies.
These could be a natural fit for expressing TaskStream programs.
AHypothetical Compiler: It is future work to automate the intu-
ition above to construct a high-level-language compiler. In addition
to the above, such a compiler would need to identify some program
structure to apply the optimizations we consider: The sizehint
could be determined by estimating loop trip counts and instruc-
tion counts. The coreMask can be determined by balancing load,
based on the relative ratio of average per-task work, and this could
be calculated similarly. For structure-recovery edges with simple
nested-loop programs, loop dependence analysis could be sufficient
(e.g. Cholesky). Workloads with dynamic dependencies, like sparse-
matrix-multiply and kNN, may require programmer help (e.g. a
loop annotation indicating dependencies).

4 DELTA: A TASKSTREAM ACCELERATOR
Delta is our proposed multicore accelerator, which implements the
TaskStream execution model. Delta tiles are interconnected with a
mesh-based NoC, and Figure 6 overviews a single tile.

The computation unit is a coarse-grained reconfigurable array,
connected via hardware ports (vector ports). The stream controller
generates memory requests from stream access patterns, and the
responses are sent to the port interface for further communication.

The novel aspect of the hardware is for task management, partic-
ularly the task-creation unit (used for storing arguments for ready
and pending tasks), and the task-batching unit (used for detecting
and scheduling tasks that read the same data). We next describe the
design and operation of these components.
Memory Hierarchy: Each core has a small private scratchpad,
and all cores share access to a shared, distributed on-chip cache.
To explain the rationale for this design, we consider the three pre-
dominant forms of reuse for memory access: 1. Small, read-only
data shared among tasks: This data should be cached on-chip dur-
ing the entire algorithm. Therefore, each core has a small private
scratchpad. 2. Shared data across a subset of tasks: Here the use
of scratchpad would require software coherence, and would be
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Figure 6: Single Tile of Delta Accelerator

difficult to manage. Therefore, Delta has a shared cache, and the
reuse across tasks is exploited using task batching. 3. Streaming
data with no reuse: This data can bypass the cache hierarchy and
will be directly streamed from memory.
Memory Stream Controller: The memory stream controller is
designed to generate memory addresses using the access patterns
and size determined by task type and arguments. Along with an
address generator, the memory stream controller also has a stream
table that holds their running state. For each stream in the task
dataflow program, we reserve some number of entries in this stream
table so that forward progress can always be guaranteed (otherwise
streams for a single port could fully occupy the table, and streams
for another port could not be scheduled).
Task Creation Unit: This unit holds tasks until all of their ar-
guments have been received. This unit includes a free list, task
argument buffer, dedicated acknowledgment buffer, and a FIFO
scheduler (see Figure 6). The task argument buffer is a simple SRAM
memory that stores task arguments sequentially, and the free list
queue maintains free entries in this buffer.

When data at producer ports is available, if the free list has
space, the arguments are pushed in the task creation buffer, and
a unique TaskID is assigned (using current core and task buffer
location information). When a task is ready (i.e. does not require an
explicit acknowledgment or already has one), the address location
of the current task (TaskID) is pushed to the FIFO scheduler. When
all consumer ports have sufficient space, the FIFO scheduler will
release the task arguments to the input ports in the given order. At
that time, the resulting entry will be pushed into the free list.
Task Batch Buffer: This unit enables dynamic batching of tasks.
Similarly to the creation unit, this unit also has a free list, batching
buffer, a small CAM and a FIFO scheduler. The batching buffer is
a banked SRAM memory; the difference here is that the free list
maintains TaskIDs of a “batch” of task arguments instead of just
one, as in the task creation unit. Also, here all the task arguments
are annotated, which includes bytes and TaskID of the dependent
tasks, as shown in Figure 6. When the data at the producer ports
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Table 3: Datasets Used in this Work

Workload Dataset-size Workload Parameters

kNN
Queries=512
Queries=1024
Queries=2048

kd-tree-depth=8
leaf-size=2048

SpMM
M1=M2=512x512
M1=M2=1k*1k
M1=M2=4k*4k

density=0.10

DB-ML T1=T2=10M
T1=T2=15M join=0.10

Cholesky N=128
N=256 tile-size=32

GCN cora (V=2708, E=10556)
citeseer (V=3243, E=4536) feat-len=64

is ready, the CAM is searched for the current DataID entry. If the
entry is found, the new task arguments are stored at this DataID’s
next empty entry. Otherwise, a new entry is popped from the free
list for this purpose. The CAM is filled whenever a new entry is
assigned to the task batching buffer, and is cleared whenever a task
batch is full or served by the data response. The usage of free list
and FIFO scheduler is similar to the task creation unit.
Task Stream Table: This table maintains the streams associated
with TaskStream edges. These include the streams that transfer data:
1. from producer ports to the corresponding task creation/batch-
ing buffer, 2. from task creation/batching buffer to corresponding
consumer ports, 3. Any streams for streaming data to remote cores.
Communication Protocol: For managing streaming communica-
tion with low network overhead, we use a coarse-grained credit-
based flow control. The consumer core sends credits to the producer
core when some number of entries become free in the consumer
port (we find 8 keeps traffic low).

Also, during streaming communication, handshaking messages
are exchanged to schedule the parent and child tasks. Here, we
need to reorder messages so that the correct parents are matched
to the correct children, which we accomplish using the “reordering
circular queue”. Space in this queue is allocated when a message is
sent. At responses, the router messages are passed via this queue,
then finally pushed to the vector port interface in order. Finally,
we use a separate virtual channel for inter-accelerator messages to
avoid deadlock. Round-robin scheduling is used for fairness.

5 METHODOLOGY

Delta Power/Area: We implemented Delta’s CGRA by extending
the Chisel-based DSAGEN [40, 66] framework. Components were
synthesized using a 28nm UMC library. We use Cacti 7.0 [37] for
estimating the overhead of the SRAM buffers and CAM within the
task creation and batching units.
Baseline Architectures: For reference, we compare against a 24-
core SKL CPU running optimized libraries: MKL [2] for Cholesky
and SpMSpM, and MADLib [1] for DB-ML. For kNN, we use the
popular FLANN [36] library. For GCN, we use the PyG library [3].

We developed a simulator for Delta and integrated it with
gem5 [9, 47, 58], using a RISCV ISA [8] for the control core. For
accelerator comparison points, we evaluated three designs:
• Static Parallel: Work is partitioned statically to each core by
the programmer, and data is tiled into each core’s scratchpad.
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Figure 7: Overall Performance Comparison

• Delta+OnlyTasks: In this version, Delta tasks are scheduled
dynamically in hardware using size-hint scheduling policy.

• Delta-TaskStream: This includes both load balance and
locality/structure-recovery optimizations within TaskStream.

Table 4: Arch. Parameters

Characteristics Value
Cores 16
FP Units 1024
Task buf. entries 16 64-byte
Memory b/w 256 GB/s
Shared Cache 2 MB
Private Scratch 256 kB
Network 64-byte mesh

Datasets: We use synthetic
datasets with varying sizes and
natural skewness; GCN uses
popular real-world graphs. Ta-
ble 3 shows the dataset sizes and
workload parameters.
Parameters: Table 4 shows the
common hardware parameters
of Delta and baselines.

6 EVALUATION
Broadly, the goal of our evaluation is to analyze whether our Delta
proposal is able to recover locality structure while retaining the
benefits of task parallelism. First we compare against a CPU and
an equivalent static parallel design. Then we give insight into per-
formance benefits with stream recovery (i.e. inter-task streaming/-
batching) by examining network traffic and core utilization over
time. Then, we explore sensitivity to the task scheduling strategy
and pipelining depth. We conclude by discussing area overheads.
Overall Performance: First, we validate that Delta provides
accelerator-like performance over existing multicore CPUs. Table 5
below shows the speedup over a 24-core baseline CPU. Cholesky
has the least speedup, as Delta exhausts all the parallelism in
this workload at the evaluated array size. The other workloads
have more data-parallelism: kNN during linear search, DB-ML for
performing kmeans search on many data points, spmspm and GCN
for matrix multiply. Thus, they achieve higher speedup, as the
data-parallel resources of the accelerator can be fully realized.

Table 5: Speedup over 24-core SKL CPU

Wkld Knn Cholesky DB-ML Spmspm GCN GM
Speedup 43.2 6.9 1729.2 65.3 105.4 81.3

Benefit of Tasks: Figure 7 shows that Delta-OnlyTasks achieves
1.3× speedup against the static reconfigurable accelerator that rep-
resents the state-of-the-art. Delta-OnlyTasks improve speedup for
kNN and DB-ML by enabling better distribution of work irrespec-
tive of where the kmean’s input (or leaf in kNN) is mapped statically,
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Figure 8: Traffic-breakdown with Stream Recovery

while it would matter in the static parallel implementation. For
SpMSpM, the speedup comes from increased parallelism from over-
lapping execution of task types as data becomes available. Cholesky
does not benefit due to low parallelism in both static-parallel and
OnlyTasks without the stream-recovery optimization. GCN is an
exception where there is a slowdown, as consecutive requests to
access the weight matrix will create a hotspot in the network.
Benefit of Structure Recovery: Figure 7 also shows that with
stream-recovery optimizations, the speedup increases to 2.2× over
the static-parallel accelerator. SpMSpM does not benefit from
stream-recovery, as it is not bottlenecked by communication; in
the outer-product implementation, the batched column of the first
matrix has high reuse – each element in the column is multiplied
with each of the elements in the second matrix’s corresponding row.
However, kNN and GCN have less reuse, and batching tasks can
reduce memory traffic by nearly an order of magnitude. Cholesky
benefits from explicit communication among dependent tasks,
which alleviates the overheads of shared memory synchronization.
DB-ML does not have opportunity for stream recovery.
MemoryTrafficReduction:To explain the source of performance
improvement using stream recovery, Figure 8 demonstrates what
percentage of memory traffic is converted into network traffic in
Delta-TaskStream. In most cases, more than 50% of the memory
traffic is converted, with even fewer packets due to multicast.
Fine-grainedCore-wiseThroughputComparison:TaskStream
optimizations improve the core utilization3 by alleviating commu-
nication bottlenecks, while providing load balance. We give insight
into its capabilities by showing the per-workload utilization over
time in Figures 9/10 and discuss below. Note that we only plot for
a subset of cores for clarity; also, core 0 is used for lower-rate (or
less compute intensive) tasks, therefore is generally under-utilized.
The title shows the average utilization across all cores.
• kNN: Tasks enable overlap of the tree search tasks, improving
utilization of Core 0, which is executing tree tasks. With stream
batching optimization, the accesses to the leaf data are batched
and multicast to co-scheduled tasks. This increases effective
bandwidth and improves utilization (see Core 1, 2, 3).

• DB-ML: Also in Figure 9, the legend lists the task-to-core map-
ping in our implementation. Sort is performed in a separate
phase for both implementations, hence we omit from this figure.
Stream recovery opportunities do not exist in DB-ML, hence we

3Utilization is defined as the percentage of functional units (FUs) fired in each cycle.
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Figure 9: Utilization Comparison with Stream Recovery.

compare static parallel and Delta-OnlyTasks. The Delta imple-
mentation dynamically distributes the “kmeans” tasks that are
created by “join” and hence is able to balance load much better
(see how static-parallel Core 1 and 2 are heavily under-utilized
in some phases).

• Cholesky: For Cholesky, we show 12 outer-loop iterations
(1 phase in TaskStream). In Delta-OnlyTasks, only one outer-
loop iteration can be performed at a time due to inter-loop
dependencies. This both reduces the available parallelism and
introduces barrier overheads. Delta allows many more parallel
tasks with the support for chained streaming. It further ensures
balanced execution by distributing load based on sizehint.
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Figure 10: Utilization Comparison with Stream Recovery

• Sparse matrix-multiply: Now referring to Figure 10, due to
the outer-product implementation of sparse matrix-multiply,
there is high reuse available. Therefore, the utilization of task-
parallel versions are nearly ideal, and there is not much poten-
tial left for task batching.

• Graph Convolution Networks: Stream-recovery signifi-
cantly improves the throughput of the matrix-multiply cores,
as batched reads of the shared weight matrix enables higher
effective network bandwidth. Since 13/16 cores work on the
matrix-multiply, this improves the average utilization by 6.6×.

Comparing Task Scheduling Strategies: Figure 11 com-
pares four scheduling policies on Delta: round-robin, random,
spatialhint, and sizehint. For kNN, spatialhint schedules
tasks with the same leaf_id to the same core, so multicasting be-
comes irrelevant. For Cholesky, sizehint gains 1.63× performance
over the baseline round-robin due to distributing square and
triangular tiles better. For DB-ML, kmeans on all data items takes a
similar amount of time, so load balance is less important, except
that spatialhint restricts scheduling, thereby aggravating load
imbalance. For SpMSpM, only spatialhint applies, as we are using
an outer product, where partial sums are maintained in scratchpads,
and we only allow tiles to be scheduled near their partial sums. This
is because scheduling elsewhere would introduce excess remote
fine-grained atomic update traffic, hurting performance. In GCN,
the scheduling policy affects the vertex-access ordering. sizehint
can balance load better by intelligently distributing vertices with
varying degree. In conclusion, sizehint consistently outperforms
the simpler random and round-robin policies. Spatialhint does
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Figure 11: Sensitivity to Load Balancing Strategies

not benefit much, as it restricts scheduling for load balancing
without surpassing the locality benefits of stream recovery.
Sensitivity to the Depth of Pipeline Parallelism: TaskStream
gives control to programmers on how to expand different facets
of parallelism. We elucidate with an experiment on Cholesky, by
varying the depth of streaming dependence chain (i.e. how many
tasks are allowed to chain), and the results are below in Table 6.
Higher depth improves available parallelism at the cost of extra
streaming network traffic, and the optimal point for these array
sizes occurs at a depth of 12. At higher depths, latency stalls to set
up the pipeline streaming communication are more compared to
the benefits of improved concurrency. One interesting finding is
the pathological case at a depth of 10; performance drops because
on our 16-core 4x4 mesh, around half of the cores are sending data
to the next half, causing much of the communication to be on a few
bisecting links. Detecting and mitigating this is future work.

Table 6: Sensitivity to Dependence Chain Depth

depth 1 2 6 8 10 12 14
Cholesky-256 1 1.8 3.1 5.6 3.6 7.7 7.5
Cholesky-128 1 2.0 2.4 2.6 3.1 3.6 3.4

AreaOverhead:Table 7 shows the area breakdown of Delta, within
and across cores. The only additional components required over the
static architecture are the task management units, which consume
3.6% of the total on chip area.

Table 7: Area and Power breakdown for Delta (28nm)

Area (mm2) Power (mW)
Control Cores 0.053 11.5
Task Creation 0.01 4.76
Task Batching 0.033 10
scratchpad+ctrl 0.08 11.2
CGRA (4x5) 0.21 80
1 Delta-Core 0.386 117.46
4x4 64 byte mesh (1) 0.2 44.7
Shared cache 12.39 2280
Delta Total 18.77 4203.7
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7 RELATEDWORK
Table 8 compares Delta and prior works based on three critical
factors: 1. Sched-flex: Flexibility to schedule work spatially across
cores, which can help balance locality and load. 2. Mem-sched:
Ability to exploit shared read-reuse among tasks. 3. Inter-task-comm:
Write-read dependencies among tasks may be resolved via shared
memory synchronization or explicit communication. No prior work
simultaneously supports hardware task scheduling flexibility and
memory scheduling, and none supports read-reuse with task-based
parallelism. The remainder of this section discusses in further detail.
Locality in Task-Runtimes: An inspiration for our work is the
study of locality-enhancing techniques for software-only thread-
ing and task-parallel systems [7, 13, 22, 32, 56, 75]. A prevailing
mechanism is work-stealing [7, 22, 32, 49, 75], which lends itself to
locality by keeping parent and child tasks together. This is effective
in divide-and-conquer algorithms, but does not guarantee locality
in general, and task stealing may incur non-negligible latency on
the critical path (especially when ported to accelerated systems).

Of particular note are techniques which recover program struc-
ture. One approach is to annotate tasks with the dataset they
may access, and use this to schedule tasks near-data. This has
been explored in task-parallel languages [12], speculative parallel
models [27, 74], and partitioned global address space (PGAS) sys-
tems [25]. Another approach is Splicing [31], which is a compiler
optimization for recursive task-parallel programs that interleaves
tasks with locality to optimize for locality.
Accelerating Task Parallel Codes: Task management is a signif-
icant overhead that has been mitigated by hardware based [29, 76],
or hardware assisted schedulers [51]. Anton2 [55] uses a hardware-
assisted task runtime for geometry processing.

Prior work has also explored accelerating task parallel work-
loads in reconfigurable hardware. TAPAS [33] is a high level syn-
thesis (HLS) toolchain that leverages the Tapir IR [53] to create
application-specific hardware for task-parallel workloads. 𝜇IR [54]
is a hardware design IR, also useful in the context of HLS, that
supports task-parallel constructs. ParallelXL [14] is a framework
that enables building custom hardware accelerators using task-
parallel execution and work stealing. Chronos [6] is a framework
to build task-parallel accelerators for applications with speculative
parallelism. Three recent works address flexible parallelism for re-
configurable accelerators: Aurochs [61] proposes a threading model
for reconfigurable dataflow architectures. PolyGraph [18] similarly
adds an integrated task/dataflow model for a reconfigurable accel-
erator. Fifer [38] temporally reorders fine-grained tasks for load
balancing. TaskStream’s structure-recovery optimizations can be
applied to any of the above systems.
Exploiting & Recovering Streaming Structure: In the context
of general-purpose processing, stream floating [65] has a “conflu-
ence” optimization that dynamically combines prefetching streams
from different cores (confluence). Near-stream computing [64] can
pipeline data between tasks offloaded to the last-level cache. Several
prior reconfigurable accelerators [19, 67, 79] have primitives for
multicast, but they are suitable for only for regular programs.

Prior domain-specific accelerators can exploit batching and
pipelining in irregular programs, but the expected structure

Table 8: Related work comparison

Sched-flex Mem-sched Inter-task-
comm

S/
w Splicing* [31] High Read-reuse Memory

Gramps* [50] High Memory

A
cc
el
-a
ss
is
te
d

C
P
U

Stream-
floating* [65]

High Read-reuse Memory

Carbon [29] High Memory
ADM [51] High Memory
Minnow [76] High Memory
Spatial-
Hints [27]

Low Near-data Memory

R
ec
on

fi
gu

ra
bl
e

A
cc
el
er
at
or
s

ParallelXL [14] High Memory
Centaur [42] High Explicit
Plasticine* [45] Restricted Read-reuse Explicit
PolyGraph [18] Restricted Near-data Memory
Aurochs [61] High Memory
Fifer [38] Restricted Near-data Memory
Delta (ours) Medium Read-reuse Explicit

* Uses traditional threads for parallelism; no hardware support for tasks.

is baked into the hardware. One example is multicasting in
sparse matrix/DNN accelerators [15, 24, 44, 46, 73, 77, 78]. Other
specialized architectures perform load balance optimizations while
exploiting various forms of reuse in hardware, like SparTen [20],
BARISTA [21] and GraphDynS [72]. MTP [11] hides memory
latency for database selections by using concurrent fine-grained
accelerator threads. Centaur [42] exploits streaming locality in
databases by combining multiple pipelined SQL operators.

In summary, our work is the first to demonstrate techniques
for exploiting structured communication in general task-parallel
accelerators.

8 CONCLUSION
For reconfigurable accelerators, task-parallelism is both a blessing
and a curse: while it bestows dynamic parallelism and load balance
capabilities, it also breaks and hides program structure that such
architectures are designed to exploit. We discovered that this struc-
ture can be recovered dynamically, provided that the hardware’s
execution model is rich enough to express inter-task communica-
tion patterns. The potential gains are significant, and the costs are
little: mean 2.2× speedup for this class of workloads, with only
3.6% area overhead. While the programmer/compiler does have
to identify the potential for structure, they are also relieved from
the difficult job of task scheduling, which is especially challenging
for accelerators with heterogeneous memories and reconfiguration
overheads.

Finally, this work contributes to a broader effort to enable recon-
figurable accelerators to be efficient on increasingly irregular and
challenging workloads; this is important if we want accelerators to
not only crunch though data at high throughput, but also to do so
using algorithmically-efficient irregular algorithms.
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