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Infinity Stream: Enabling Transparent and
Automated In-Memory Computing

Zhengrong Wang, Christopher Liu, and Tony Nowatzki

Abstract—Although in-memory computing is promising to alleviate the data movement bottlenecks by parallelizing computation across
memory bitlines, key challenges from its unique execution model remain unsolved: Automatically parallelizing sequential programs;
Dynamically managing and aligning data in transposed layout required for bit-serial logic; Mixing in/near-memory computing. These
challenges should be solved transparently to maintain portability without exposing hardware details to programmers. In this work, we
introduce a novel intermediate representation – tensor dataflow graph (tDFG) – with tensor nodes representing the spatially unrolled data
across bitlines, and explicit move nodes to align operands in the same bitline, which helps the compiler optimize for massive parallelism
and data layout. To maintain transparency and portability, we directly embed tDFG in the ISA, which is lowered into bit-serial operations at
runtime to hide the hardware details. Evaluated on cycle-accurate simulator across various data-processing workloads, our approach
achieves 4.5× speedup and 52% traffic reduction over a state-of-the-art near-memory computing technique.

Index Terms—Stream-Based ISAs; Programmer-Transparent Acceleration; In-Memory Computing

F

A S SYSTEMS scale up, growing data movement bottlenecks
force architects to shift from traditional core-centric com-

puting to a memory-centric view. To reduce communication cost,
near-memory computing adds specialized hardware near memory
banks to decouple computation from core pipelines. In-memory
computing further pushes this offloading to the extreme, providing
massive parallelism (e.g. bit-serial [1]–[3] or analog [5]). Our focus
is bit-serial compute in the L3 SRAM.

Although promising, in-memory computing’s applicability is
currently limited by challenges within its unique execution model:
• Parallelism: Distributing computation to bitlines requires rea-

soning about massive vector parallelism, which is challenging
for languages/ISAs with sequential semantics.

• Data Layout: Bit-serial logic requires transposing data and
enforcing bitline-alignment between data structures. A suitable
data layout is critical to reduce data transfer traffic and realize
the potential of in-memory computing.

• Unification: Sometimes it’s more beneficial to split the com-
putation between in/near-memory computing, e.g. in-memory
reduction to quickly produce partial results, which are reduced
to the final value by near-memory computing. This requires a
unified abstraction across paradigms.

• Transparency: Programmers should be abstracted from the
parallelization strategy, data layout, underlying hardware
details, etc. Further, the compiled binary should be portable
across input data sizes and hardware platforms.
Existing techniques have not fully addressed these, as they

are either domain specific (e.g. [2] for CNN) or require program
rewriting (e.g. [3]). New compiler/ISA abstractions are needed.

Our inspiration comes from previous efforts to enable transpar-
ent and general near-memory computing by encoding long-term
memory access patterns (i.e. streams) and associated near-stream
computation in the ISA [6]–[8]. Streams may be scheduled in-core
or near-memory depending on the data locality. However, streams
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are inherently sequential and do not have a representation for data
movement and alignment among bitlines for bit-serial logics.

To solve this problem, our insight is that in target workloads,
streams usually access rectangular subregions of the multidimen-
sional array, and corresponding computations have very simple
parallelism and reuse patterns. We refer such subregions as tensors,
and the near-stream computation and dependences now apply to
the entire tensor instead of individual elements, forming a tensor
dataflow graph (tDFG). We use tDFG as both a compiler IR and
an ISA abstraction to solve the above challenges:
• Parallelism: tDFG effectively exposes the massive parallelism

in the original sequential program, enabling the compiler to
optimize for in-memory computing.

• Data Layout: tDFG also explicitly encodes the data movement
operations to align tensor operands in the same bitline for
computing, which helps the system choose a suitable data
layout to align data structures and reduce overall traffic.

• Unification: Both tensors (parallel) and streams (sequential)
can be expressed in the tDFG, enabling flexible offloading
strategies. For example, a load stream may broadcast the CNN
weights to all bitlines (stream to tensor), or a reduction stream
can execute near L3 banks to collect the partial results from
each SRAM array (tensor to stream).

• Transparency: As an ISA abstraction, tDFG is hidden from
programmers, as it is constructed by the compiler and is neutral
to hardware parameters and data input sizes for portability.
Leveraging the tDFG, we propose infinity stream, which

transparently and flexibly enables systems to offloading to either
in/near memory, fusing these two paradigms. Evaluated with LLVM
and gem5 [4], it achieves 4.5× speedup and 52% traffic reduction
over near-memory only [8]. Specifically, our contributions are:
• tDFG abstraction IR and ISA to enable transparent and portable

in-memory computing, with detailed evaluation.
• Compiler techniques to build tDFGs from unmodified source,

and optimizations for parallelism and reducing data movement.
• µarch to dynamically lower tDFGs into bit-serial ops, manage

transposed data layout and parallelized execution.
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Fig. 1: Example of Compiling for Infinity Stream

1 INFINITY STREAM DESIGN

In this section, we discuss the key compiler and microarchitecture
extensions of infinity stream, as well as some related works.

1.1 Compiling Infinity Stream

The compiler progressively lowers a program region through two
IRs. First is the stream dataflow graph (sDFG), which embeds
sequential access patterns as streams with associated near-stream
computations. The tensor dataflow graph (tDFG) is an extension
which lowers parallelizable streams to tensors for in-memory
computing. The IR has a direct ending in the ISA.

Stream DFG: Fig 1 shows example programs and the extracted
sDFG. In our system, each stream (and some associated instruc-
tions) can be offloaded to a core near where the data resides in L3
cache. Offload decisions depend on data locality and size (see 1.2).

Tensorization: In-memory computing essentially requires un-
rolling computation across all bitlines. Inspired by this observation,
if the stream accesses a rectangular portion of the data structure,
we can fully unroll it into a tensor. Unlike streams, tensors do not
imply a temporal sequential semantics (i.e. elements processed one
by one), but are fully expanded in space (specifically, bitlines in this
work). Streams with complex patterns or loop-carried dependencies
can not be unrolled into tensors (e.g. non-associative reduction).

Tensor Dataflow Graph: After unrolling streams spatially into
tensors, the original computations and dependencies now apply
to the entire tensor, forming a new tensor DFG (tDFG, Fig 1).
Tensor operations, e.g. addition, requires operands to be exactly
aligned in space, i.e. on the same bitline. Therefore, the tDFG
explicitly represents shift operations to align tensors as mv nodes.
For example, in Fig 1(a), tensor A[0,N-2) is moved to the right
by 1 to align with A[1,N-1). This is crucial to optimize and
compile the data movement for in-memory computing. Also, tDFG
is parameterized to maintain portability across variant input sizes.

Mixing sDFG and tDFG: Some streams/ops are not unrolled
into tensors, e.g. outer-loop ops with insufficient parallelism to

/akk
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Fig. 2: Example of Compiled Infinity Stream Program

make in-memory computing profitable, leading to a mixed sDFG
and tDFG. For example, in-memory computing can not handle
the last few rounds of reduction efficiently, and the reduction in
Fig 1(b) is split into two nodes: a tDFG node to perform partial
in-memory reduction, and a stream node to perform final reduction
on these partial results. Fig 1(c) shows an example where the sDFG
communicates to the tDFG – stream sBi is not unrolled into a
tensor due to low parallelism and stream sm writes the division
result (m) into a tensor tm, which is later consumed by the tDFG.

Scheduling tDFG: After optimizing the tDFG (see below), the
compiler performs register allocation and scheduling. An SRAM
array with 256 wordlines only provides 8 32-bit registers so the
hardware may recompute some results to reduce register pressure.
Fusing multiple physical SRAM arrays into a larger virtual SRAM
array with more registers is possible, but left for future work.

Infinity Stream Configuration: Fig 2 shows the compiled pro-
gram of Fig 1(c). Both in/near-memory configurations are encoded
in the binary to be selected at runtime. s_cfg/end instructions
are inserted before and after the loop to set up and release the
stream states. The original loop is eliminated when the entire loop
body is decoupled as infinity stream region without aliasing. It also
provides some hints to help the microarchitecture decide which
one to execute at runtime, e.g., how large the data structure should
be to make in-memory computing profitable.

Data Layout Hint: A suitable data layout (e.g. tiling sizes) is
critical to reduce data movement. Since it depends on hardware
details, e.g. network topology/bandwidth, we leave the decision to
runtime and make tDFG neutral to the actual data layout. Never-
theless, the compiler can provide hints by analyzing the tDFG, e.g.
it knows that the array would be shifted along certain dimensions
(and should be tiled at those dimensions), as well as which arrays
are used for computation (and should be aligned by bitlines). Fig 2
demonstrates using s_region/align instructions to declare a
2D array A[N][N]. The hint says it should be tiled to reduce shift
traffic in both dimensions. Finally, a s_remap instruction triggers
the hardware to select a data layout (see §1.2).

Optimizing tDFG: tDFG can be optimized to reduce data move-
ment and reuse results, with two optimizations widely applicable:
• Tensor Expansion: It is common that two mv have

the same distance and dimension but on slightly dif-
ferent tensors. In Fig 3, tA0:[0,N-2)x[0,M-2) and
tA3:[0,N-2)x[1,M-1) are both shift to the right by 1. We
can use one mv on the expanded tensor [0,N-2)x[0,M-1)
instead of two shift operations.

• Reuse Common Comp.: We can also reuse earlier tensor
computations. In Fig 3, instead of multiplying by C0 four
times, we can reuse the result by shifting it around as a tensor.
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Fig. 3: Example of Optimized tDFG

Phys. Addr. Wordlines Ni Ti Transposed

0x100000-0x500000 [0, 32) 1024×1024 16×16 0

TABLE 1: Layout Override Table (LOT)

1.2 Microarchitecture Extensions

Fig 4 overviews microarchitecture extensions to support infinity
stream for both in/near-memory computing. Broadly, stream
engines execute streams, coordinate with the core for near-data
execution, and make offloading decisions. Tensor controllers
manage the data-layout through layout overide tables (LOT). Tensor
engines executes in-memory computation on SRAM arrays.

In/Near-Memory Decision: When configuring infinity streams,
the core stream engine (SEcore in Fig 4) evaluate the hints, e.g.
the array size, and decides whether to offload as in/near-memory
computing or not offload at all.

Near-Memory Computing: If near-memory computing is pre-
ferred, the SEcore offloads streams to the L3 stream engine (SEL3)
in Fig 4. The SEL3 issues offloaded near-stream computations to the
local core within the same tile to reuse the vector units, effectively
performing near-memory computing. This is similar to [8].

Transposed Data Layout: If offloaded in-memory, based on the
compiler hints (via s_region/align), the tensor controller in
Fig 4 chooses the transposed data layout. The data array is broken
into multidimensional tiles, each transposed and mapped to one
SRAM array (starting from the L3 bank 0, way 0, array 0).

Assume a 2D N0×N1 array with element size E, cache line
size L and each SRAM array with B bitlines, the tile size T0×T1
must satisfy these constraints:
• T0×T1 = B: Each tile occupies all bitlines in one SRAM array.
• T0×E mod L = 0: Each line is stored within one SRAM array.
• Ni mod Ti = 0: The array is fully tiled without padding.

With these constraints, transposed cache lines are guaranteed to
be in a single SRAM array, and still accessible by normal core or
stream requests (at the price of longer latency to transpose back).
The tensor controller iterates some predefined tile sizes and pick
the first valid one. If there is no valid tile size, the data structure
will not be transposed and no in-memory computing is performed
on it. In practice, this rarely fails for large arrays as they are often
padded to cache line by programmers. Multiple data structures
used by the same computation are aligned to the same bitline but
occupying different wordlines, e.g. the input and output image of
2D convolution.

The layout override tables (LOTs) records the layout for each
transposed data structure. Table 1 shows an example entry of LOT
representing a 2D array with N0 = N1 = 1024,E = 4 tiled by 16 in
both dimensions. We support transposed layout up to 3D array.
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Transpose Data: Each LOT entry contains a transposed bit
initialized to 0, indicating whether the data within this physical
address ranges are currently cached in transposed layout. Before
starting the in-memory computing, the tensor controller checks this
bit and creates special load streams to fetch and put the data into
transposed format. Similar to normal offloaded streams, these load
streams are executed in the SEL3 to avoid the traffic overheads
between L2 and L3. After transposing, the tensor controller sets
the transposed bit, and starts in-memory computing. We only
need to transpose once for multiple computations on the same data.

Lowering tDFG: While waiting for data transposing, the tensor
controller starts to lower the tDFG into bit-serial commands. This is
left to runtime to maintain flexibility across variant input sizes and
hardware platforms. Commands are reused if the region is executed
multiple times with same parameters. Fig 5 shows a toy example
how a 4x4 2D array is split into 2x2 tiles, and mapped to SRAM
arrays. The mv node to right shift columns [0, 3) by 1 is lowered
into three commands: two intra-SRAM-array shifts (with zero tile
distance) to move column 0 and 2 respectively (black arrow); one
inter-SRAM-array shift to move column 1 as it jumps across the
tile boundary and reserved way (red arrow). Each command has
a bitline and tile pattern to specify the applied bitlines and tiles.
Compute and broadcast nodes are lowered similarly. The tensor
controller broadcasts commands to tensor engines in L3 banks,
which further breaks them into basic bit-serial operations, and skips
those not applied to its local tiles.

Synchronization: To maintain correctness, the tensor controller
inserts sync commands when coordination between tiles is needed.
For example, a sync command is inserted between a shift and a
compute command to ensure that all operands are ready. When
encountering a sync command, the tensor engine reports the number
of packets sent to each receiving bank to the tensor controller. After
receiving acks from all tensor engines, the tensor controller checks
all receiving tensor engines that the number of sent/received packets
matches before broadcasting a message to clear the barrier.
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System Size 8x8 Cores. Mesh NoC, 256-bit 1-cycle link.

L3 Cache 512x512 (32kB) SRAM array with 8-bit port.
8 arrays per way, 16 ways per bank, total 256MB.

DRAM 4x4 DDR4-3200MHz channels (25.6GB/s).

TABLE 2: L3 Cache Parameters
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Fig. 6: Overall Speedup

1.3 Most Related Works
This work adopts the compiler and microarchitecture extensions
from Near-Stream Computing [8] to support near-memory comput-
ing (e.g. sDFG, SEcore), and expands them to enable transparent
and automated in-memory computing.

Duality Cache [3] is a CPU architecture with bit-serial logic
logic in its L3 SRAM. Programmed with CUDA, it translates PTX
emitted by NVIDIA’s CUDA compiler (nvcc) into their in-memory
ISA. While GPUs also have an abundance of threads, nvcc makes
other architectural assumptions that are unavailable for in-memory
compute. For example, without support for efficient shift operations
common in many kernels, memory-traffic performance will suffer.

2 EVALUATION

We evaluate infinity stream against conventional OOO cores
and a state-of-the-art near-memory computing technique, and
demonstrate that infinity stream successfully exploits the massive
parallelism of in-memory computing while still maintaining the
flexibility to incorporate near-memory computing.

Parameters and Configurations: Table 2 lists the key parameters
of the L3 cache. In total, it has 4M bitlines and provides massive
parallelism for in-memory computing. Arrays are connected with
h-trees that support inter-array data movements. We assume the bit-
serial operation latency from prior work [3]. The Base OOO cores
uses advanced L1 and L2 prefetchers. For near-memory computing,
Near-L3 offloads streams and the associated computation to SEL3.
For infinity stream, we evaluate three configurations:
• Inf-Ssoft invokes a runtime library to lower tDFG into bit-serial

commands (about 1k cycles per command).
• Inf-Sfixed assumes that input and hardware parameters are

known to precompile tDFG (no runtime lowering).
• Inf-S introduces a lightweight hardware pipeline to lower tDFG

(10 cycles/cmd, mostly simple arithmetic operations).

Workloads: We evaluate 9 dense OpenMP workloads, vectorized
by AVX-512 for Base and Near-L3. For infinity stream, a single-
thread scalar version is sufficient as streams are spatially unrolled
to all bitlines. Unless stated otherwise, all workloads operate on a
2048×2048 matrix or equivalent sized input.

Performance: Fig 6 shows the overall speedup over Base. Near-
L3 achieves 18% speedup and 24% traffic reduction by offloading
streams near L3 banks, but may hurt the performance as it is unable

By leveraging massive parallelism in bitlines, infinity stream
achieves significant speedup (2.5× to 4.6×) over Near-L3. Also,

to capture the reuse, and it needs to send the data multiple times;
e.g. for conv3D Near-L3 introduces 110% extra NoC traffic.
optimizing tDFG helps capture the reuse and avoid duplicated data
movement and computation as in Near-L3. (see Fig 3).

Cycle Breakdown: Fig 7 breaks down the cycles of Inf-S into
loading and transposing data from DRAM, lowering tDFG to
commands, performing bit-serial computing and moving tensors
around. Overall, in-memory computing takes 86% of total cycles,
with 44%, 20%, and 20% spent in transposing, computing,
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Fig. 7: Inf-S Cycle Breakdown

and tensor moving respectively.
14% cycles are spent waiting for
synchronization or near-memory
streams, e.g. the reduction
stream in mm_inner. Transpos-
ing is cheap when there is high
reuse, e.g. gauss_elim. Dots
in Fig 7 indicates the percentage
of ops offloaded to bitlines –
nearly all computation (99%)
are performed in-memory to exploit the massive parallelism.

Overheads of Lowering tDFG: Although suffering from long
latency to invoke a runtime library to lower the tDFG, Inf-Ssoft
still achieves 2.5× speedup over Near-L3. By fixing all parameters
and precompiling tDFG into commands, Inf-Sfixed achieves the
highest 4.6× speedup, but sacrifices portability. With the hardware
lowering pipeline, Inf-S yields speedup close to Inf-Sfixed (4.5×)
while maintaining the flexibility.

3 CONCLUSION

This work leverages tensors, a novel compiler/ISA abstraction, to
enable flexible and transparent in-memory computing. By unrolling
streams into tensors and explicitly embedding data movements in
the tensor DFG (tDFG), the compiler can reason about exposed
massive parallelism and optimize data layout and reuse. The tDFG
is designed to be neutral to both data sizes and hardware details,
and can be efficiently lowered to bit-serial commands at runtime
in order to maintain flexibility. More importantly, conversion
between streams/tensors fuses in/near-memory computing, which
is crucial to continue performance scaling and energy efficiency
improvements in future large-scale systems.
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