UNIT: <u>Unifying</u> <u>Tensorized</u> Instruction Compilation

- Jian Weng¹², Animesh Jain², Jie Wang¹², Leyuan Wang², Yida Wang², Tony Nowatzki¹
 - ¹UCIA ²Amazon Web Services
 - Mar. 1st, 2020

Motivation: Mixed Precision

- Mixed precision
 - Low-precision Inputs
 - **High-precison Outputs**

• Blindly using fp16 does not help the performance

Motivation: Tensorization Idiom

- Reducing multiple low precision to high
 - Horizontal reduction
 - Mixed precision
- S/w Abstraction
 - Kernel Libraries
 - Manually Program Instrinsics
 - Compiler

- i16x32
- i16x32

Nvidia Tensor Core

nvvm.wmma.ml6nl6kl6.mma.row.row.f32.f32

a62

c15

dst15

a61

a63

)	

<u>Unifying</u> Tensorized Instruction Compilation

- Unified Instruction Abstraction
 - Instructions integrated by their semantics
- Unified Analysis of Applicability
 - Computation: Arithmetic isomorphism
 - Memory Access: Pattern isomorphism
- Unified Code Generation Interfaces
 - Reorganize the loops
 - Rewrite with the tensorized inst.
 - Tuning for favorable performance

Tensor Domain Specific Language

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)k,rc = loop axis(0,K), reduce axis(0,C) x,y = loop axis(0,H-R+1), loop axis(0,W-S+1)r,s = reduce axis(0,R), reduce axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

- Tensor DSL [10, 31, 37]
 - Tensors
 - Loop Variables
 - Data-Parallel/Reduction
 - Expressions
 - Decoupled Loop Organization

5

Tensor Domain Specific Language

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)k,rc = loop axis(0,K), reduce axis(0,C) x,y = loop axis(0,H-R+1), loop axis(0,W-S+1)r,s = reduce axis(0,R), reduce axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

Split/Tile

for (i=0; i<n; ++i)</pre> expr uses i

for (io=0; io<n/4; ++io) for (ii=0; ii<4; ++ii)</pre> // expr uses io*4+ii

Reorder

for (i=0; i<n; ++i)</pre> for (j=0; j<m; ++j)</pre> // expr uses i,j

for (j=0; j<m; ++j) for (i=0; i<n; ++i)</pre> // expr uses i,j

- Tensor DSL [10, 31, 37]
 - Tensors
 - Loop Variables
 - Data-Parallel/Reduction
 - Expressions
 - Decoupled Loop Organization

Unroll

/	expr	l	replaced	by	0
/	expr	i	replaced	by	1
/	ovnr	i	ronlacod	hv	2

- // expr i replaced by 2
- // expr i replaced by 3

6

<u>Unifying</u> Tensorized Instruction Compilation

- **Unified Instruction Abstraction**
 - Instructions integrated by their semantics
- Unified Analysis of Applicability
 - Computation: Arithmetic isomorphism
 - Memory Access: Pattern isomorphism
- Unified Code Generation Interfaces
 - Reorganize the loops
 - Rewrite with the tensorized inst.
 - Tuning for favorable performance

Unified Instruction Description

- Describe the instruction in Tensor DSL
 - Tensors are registers
 - Expr describes arithmetic behavior
- Expose this information for applicability analysis
 - Expression tree
 - Register shape
 - Loop axis
 - Data-Parallel/Reduction

Intel VNNI

x86.avx512.pbpdusd

- a, b = tensor((64,),u8), tensor((64,),i8)c, d = tensor((16,), i32), tensor((16,), i32) i, j = loop axis(0, 16), reduce axis(0, 4)d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))
- **Nvidia Tensor Core**

nvvm.wmma.m16n16k16.mma.row.row.f32.f32

a, b = tensor((16, 16), fp16), tensor((16, 16), fp16)i, j = loop axis(0,16), loop axis(0,16)|k = reduce axis(0, 16)|c[i,j] += fp32(a[i,k]) * fp32(b[k,j])

<u>Unifying</u> Tensorized Instruction Compilation

- Unified Instruction Abstraction
 - Instructions integrated by their semantics
- Unified Analysis of Applicability
 - **Computation: Arithmetic isomorphism**
 - Memory Access: Pattern isomorphism
- Unified Code Generation Interfaces
 - Reorganize the loops
 - Rewrite with the tensorized inst.
 - Tuning for favorable performance

Analysis: Arithmetic Isomorphism

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)k,rc = loop axis(0,K), reduce axis(0,C) x,y = loop axis(0,H-R+1), loop axis(0,W-S+1)r,s = reduce axis(0,R), reduce axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

Intel VNNI x86.avx512.pbpdusd

a, b = tensor((64,),u8), tensor((64,),i8)c, d = tensor((16,), i32), tensor((16,), i32)i, j = loop axis(0, 16), reduce axis(0, 4)d[i] = c[i] + sum(i32(a[i*4+j])*i32(b[i*4+j]))

10

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8) k,rc = loop_axis(0,K), reduce_axis(0,C) x,y = loop_axis(0,H-R+1), loop_axis(0,W-S+1) r,s = reduce_axis(0,R), reduce_axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

• k -> i, rc -> j

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)k,rc = loop axis(0,K), reduce axis(0,C) $x,y = loop_axis(0,H-R+1), loop_axis(0,W-S+1)$ r,s = reduce axis(0,R), reduce axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,rc])

• k \rightarrow i, rc \rightarrow j

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i k,rc = loop_axis(0,K), reduce_axis(0,C) x,y = loop_axis(0,H-R+1), loop_axis(0,W-S+1) r,s = reduce_axis(0,R), reduce_axis(0,S) c[x,y,k] += i32(a[x+r,y+s,rc])*i32(b[r,s,k,r

• k -> i, rc -> j

for (x=0; x<(H-R)+1; ++x)for (y=0; y<(W-S)+1; ++y)for (k=0; k<K; ++k)for (r=0; r<R; ++r) for (s=0; s<S; ++s) for (rc=0; rc<C; ++rc)..... c[x, y, k] +=a[x+r,y+s,rc]*b[r,s,k,rc];

a[x+r,y+s,rc]*b[r,s,k,rc]; }

Convolution

// Convolution in tensor DSL a,b = tensor((H,W,C), u8),tensor((R,S,K,C),i8)k,rc = loop axis(0,K), reduce axis(0,C) x,y = loop axis(0,H-R+1), loop axis(0,W-S+1)r,s = reduce axis(0,R), reduce axis(0,S)

• $k \rightarrow i$, $rc \rightarrow j$

Conv. Mem. Op Inst. Mem. Op d[**i**] C[X, Y, **k**] C[**i**] C[X, Y, **k**] a[**i***4+**j**] a[x+r,y+s,**rc**] b[**i***4+**j**] b[r,s,k,rc]

Mem.	Conv.	Accessed	Inst.	Mem 2	Acce
	[16]	—	[16]		
	[16]	—	[16]		
	[4]	\subseteq	[64]	(Bro	adcas
	[4x16	—	[64]	(Cond	catena

<u>Unifying</u> Tensorized Instruction Compilation

- Unified Instruction Abstraction
 - Instructions integrated by their semantics
- Unified Analysis of Applicability
 - Computation: Arithmetic isomorphism
 - Memory Access: Pattern isomorphism
- **Unified Code Generation Interfaces**
 - **Reorganize the loops** \bullet
 - **Rewrite with the tensorized inst.**
 - Tuning for favorable performance

Transformation: Loop Reorg.

loop_axis(0,16) = reduce axis(0,4)

• k \rightarrow i, rc \rightarrow j

- Transform loops to for rewriting
 - Tile loops by corresponding trip counts
 - Reorder to the inner most

16

- Implement callback functions to generate each operand
- def operand generator(array, base, loops, coef): # implement the rule of codegen here # array: the array pointer of the memory operation # loops: chosen loops to be tensorized, # from inner to outer # coef: the coefficient of each loop variable # base: the base addresss # thus, index = base + sum(loops[i] * coef[i]) # return operand load intrinsic

17

- Implement callback functions to generate each operand
- def operand generator(array, base, loops, coef): # implement the rule of codegen here # array: the array pointer of the memory operation # loops: chosen loops to be tensorized, from inner to outer # # coef: the coefficient of each loop variable # base: the base addresss # thus, index = base + sum(loops[i] * coef[i]) # return operand load intrinsic

Generated:

Memory Operation: a[x+r, y+s, rc]Flattened: a[(x+r)*d1+(y+s)*d0+rc]Arguments: array: a base : (x+r) *d1+(y+s) *d0 loop : [rc, k] coef : [1, 0]

- Implement callback functions to generate each operand
- def operand generator(array, base, loops, coef): # implement the rule of codegen here # array: the array pointer of the memory operation # loops: chosen loops to be tensorized, from inner to outer # # coef: the coefficient of each loop variable # base: the base addresss # thus, index = base + sum(loops[i] * coef[i]) # return operand load intrinsic

Generated:

Memory Operation: a[x+r, y+s, rc]Flattened: a[(x+r)*d1+(y+s)*d0+rc]Arguments: array: a base : (x+r)*d1+(y+s)*d0loop : [**rc**, k] coef : [1, 0]

a[(x+r)*d1+(y+s)*d0+(0..4)]

- Implement callback functions to generate each operand
- def operand generator(array, base, loops, coef): # implement the rule of codegen here # array: the array pointer of the memory operation # loops: chosen loops to be tensorized, from inner to outer # # coef: the coefficient of each loop variable # base: the base addresss # thus, index = base + sum(loops[i] * coef[i]) # return operand load intrinsic

Memory Operation: a[x+r, y+s, rc]Flattened: a[(x+r)*d1+(y+s)*d0+rc]Arguments: array: a base : (x+r) *d1+(y+s) *d0 loop : [rc, **k**] coef : [1, 0]

Generated: broadcast(a[(x+r)*d1+(y+s)*d0+(0..4)], 16)

- Implement callback functions to generate each operand
- def operand generator(array, base, loops, coef): # implement the rule of codegen here # array: the array pointer of the memory operation # loops: chosen loops to be tensorized, from inner to outer # # coef: the coefficient of each loop variable # base: the base addresss # thus, index = base + sum(loops[i] * coef[i]) # return operand load intrinsic
- Invoke each callback function to plug in the operands

def codegen(opcode, operands, callbacks): args = [func(arg) for arg, func in zip(operands, callbacks)] return inline asm(opcode, args)

21

<u>Unifying</u> Tensorized Instruction Compilation

- Unified Instruction Abstraction
 - Instructions integrated by their semantics
- Unified Analysis of Applicability
 - Computation: Arithmetic isomorphism
 - Memory Access: Pattern isomorphism

Unified Code Generation Interfaces

- Reorganize the loops
- Rewrite with the tensorized inst.
- Tuning for favorable performance

Idiom-Based Performance Tuning

- The outer loops are open to performance tuning
 - Data Parallel/Reduction
- Parallelism
 - Coarse-Grain: Thread-level Parallelism
 - Distribute compute to proper #cores
 - Fine-Grain: Pipeline Parallelism

Achieve instruction-level parallelism by avoiding loop-carried penalty

CPU Performance Tuning

- Coarse-Grain Parallelism: Distributing spatial loops to threads
- Find-Grain Parallelism: Avoiding loop carried dependences

GPU Performance Tuning (Generic)

Coarse Grain: Launch the CUDA kernel on multiple GPU blocks.

- No data reuse across the innermost reduction loop
- Loop-carried accumulation causes pipeline penalty

// Direct accumulation // a[n,k], b[k,m], c[n,m] Buffer<fp16,16,16> A, B; Buffer<fp32,16,16> C; for (i=0; i<n; i+=16)</pre> for (j=0; j<m; j+=16)</pre> for (r=0; r<k; r+=16) {</pre> A = Load(a[i:16,r:16]);B = Load(b[r:16, j:16]);C += TensorCore(A, B); } Store(c[i:16,j:16], C);

25

GPU Performance Tuning (Generic)

- Unroll 2 loops by pxp
- + Loop-carried dependence avoided by the outer-product
- + Each loaded sub-matrix are reused p times

CNN-Specialized Tuning on GPU

- Small width and height
- Deep channels

CNN-Specialized Tuning (Fuse Dim.)

- Tensors in DNN workloads often have small width and height
 - (1) Padding a perfect tiling size is wasting
 - (2) Fuse width and height to safe memory traffic
- Introduces software overhead of data rearrangement

(1): More than 3/4 (25/32) traffic is wasted by padding

(2): Less than 1/4 (15/64) traffic is wasted by padding.

CNN-Specialized Tuning (Split Red)

- Tensors in DNN workloads often have deep input channels
 - (1) Split the reduce loop across threads
 - (2) Store the partial accumulation in shared memory
 - (3) Reduce the partial sum and write back
- A proper degree of splitting
 - Small: To small to hide memory latency
 - Large: Overhead of sync; register pressure

- Hardware
 - CPU: Amazon EC2 c5.12xlarge, with Intel Xeon Platinum 8275 CL @3.00G
 - GPU: Amazon EC2 p3.2xlarge, with Nvidia Tesla V100
 - ARM: Amazon EC2 m6g.8xlarge, with Amazon Graviton 2 ARM CPU
- Software
 - Compiler and Runtime: LLVM-10, and CUDA-10
 - Vendor Provided Libraries: cuDNN 7.6.5, and oneDNN v1.6.1
 - DNN Models: BS=1, MxNet models converted to TVM Relay [32] for
 - Padded data shape
 - Proper data layout NCHW [x] c and KCRS [y] k [x] c [23]

Evaluation: Methodology

Evaluation: Goal

- Performance
 - End-to-end: How is the overall performance of UNIT? 9 popular end-to-end DNN models
 - Ablation: How does each optimization help the performance?
 - 16 representative convolution layers
- Extensibility
 - Hardware Platform: ARM DOT

2.00 2.01 2.21 cuDNN (fp16) UNIT 1.82 1.75 1.69 1.66 1.62 1.61 1.50 1.53 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50

Performance Impact of Tuning (GPU)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	288	160	1056	80	128	192	256	1024	128	576	96	1024	576	64	64
H=W(I)	35	9	7	73	16	16	16	14	16	14	16	14	14	29	56
K	384	224	192	192	128	192	256	512	160	192	128	256	128	96	128
R=S	3	3	1	3	3	3	3	1	3	1	3	1	1	3	1
Stride	2	1	1	1	1	1	1	1	1	1	1	1	1	1	2
H=W(O)	17	7	7	71	14	14	14	14	14	14	14	14	14	27	28

E2E Performance (ARM Amazon Graviton 2)

- Describe ARM DOT in Tensor DSL
- Reuse Analysis, Xform, and Tuning

Conclusion

- UNIT
 - A unified compilation flow for the emerging tensorization idiom
 - Tuning strategies for DNN workloads
- Future Work
 - Automated data layout transformation
 - A extension to vectorizer

