
Stream-based Memory Access Specialization for General
Purpose Processors

Zhengrong Wang
University of California, Los Angeles

seanzw@ucla.edu

Tony Nowatzki
University of California, Los Angeles

tjn@cs.ucla.edu

ABSTRACT
Because of severe limitations in technology scaling, architects have
innovated in specializing general purpose processors for compu-
tation primitives (e.g. vector instructions, loop accelerators). The
general principle is exposing rich semantics to the ISA. An oppor-
tunity to explore is whether richer semantics of memory access
patterns could also be used to improve the efficiency of memory and
communication. Two important open questions are how to convey
higher level memory information and how to take advantage of
this information in hardware.

We find that a majority of memory accesses follow a small num-
ber of simple patterns; we term these streams (e.g. affine, indirect).
Streams can often be decoupled from core execution, and patterns
persist long enough to express useful behavior. Our approach is
therefore to express streams as ISA primitives, which we argue
can enable: prefetch stream accesses to hide memory latency, semi-
binding decoupled access to remove address computation and opti-
mize the memory interface, and finally inform cache policies.

In this work, we propose ISA-extensions for decoupled-streams,
which interact with the core using a FIFO-based interface. We imple-
ment optimizations for each of the aforementioned opportunities
on an aggressive wide-issue OOO core and evaluate with SPEC CPU
2017 and CortexSuite[1, 2]. Across all workloads, we observe about
1.37× speedup and energy efficiency improvement over hardware
stride prefetching.

CCS CONCEPTS
• Computer systems organization → Architectures; Hetero-
geneous (hybrid) systems.

KEYWORDS
Stream, Specialization, Decoupled Access Execute, DAE, Prefetch-
ing, Cache Bypassing, Microarchitecture, ISA

ACM Reference Format:
Zhengrong Wang and Tony Nowatzki. 2019. Stream-based Memory Access
Specialization for General Purpose Processors. In ISCA ’19: 46th International
Symposium on Computer Architecture, June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3307650.3322229

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322229

1 INTRODUCTION
Inspired by the slowing of technology scaling and the limits of
improving general purpose processors, architects have developed
many techniques which specialize aspects of general purpose ex-
ecution. This includes well-known techniques like vector instruc-
tions, custom application specific instructions, and more recently
a number of in-core accelerators which specialize for particular
computational patterns [3–9]. These approaches add rich semantic
information into an ISA and leverage this with a more aggressive
or streamlined computation substrate. For example, vector archi-
tectures expose instruction parallelism in the ISA; CCA and DySER
expose instruction dependence in the ISA; BERET exposes the pres-
ence of common control patterns to the ISA, and so on.

Though these techniques deliver significant performance and en-
ergy advantages, their specialization capabilities end at the bound-
ary to the memory system. This is problematic considering Am-
dahl’s law for energy; one study of general purpose cores showed
that the cache hierarchy and network consumed more than 50% of
power on chip [10]. Also, specialization paradigms typically make
strong assumptions on common code behaviors, limiting their po-
tential scope1. Specializing the core computation substrate and
relying on only traditional memory abstractions is insufficient.

One unexplored opportunity is to perform the equivalent form
of specialization for memory primitives: expose rich semantic infor-
mation about memory operations at fine grain at the ISA level, and
take advantage with microarchitecture mechanisms. To be worth
the specialization effort, such an approach should be designed to
address many of the sources of inefficiency of memory access, in-
cluding within the core pipeline, at the interface to cache, and
within the cache system itself. More specifically, this includes the
overhead in the pipeline for address generation instructions, the
overhead of requiring long instruction windows for generating
overlapping memory requests, and also reducing the number of
requests and transfers in the memory system.

A critical question then is: what is the structure of memory
accesses which can be exploited? Our perhaps unsurprising answer
is streams – repeated patterns of memory access, occurring due to
loops and nested loops. Figure 1 shows the prevalence of streams in
CortexSuite [1, 2] and SPEC CPU 2017, with a breakdown to affine,
indirect, and pointer-chasing types. On average, more than half of
dynamic accesses across both benchmark suites can be considered
as streams, with the simplest affine streams being the most common.

Given the premise of specialization for streams, a number of
interesting questions arise: How should memory access patterns be
communicated to avoid high-overhead? Should data be consumed
in a binding way, or only through the cache? How to ensure the

1For example, CCA [3] and DySER [5] rely on clusters of dependent computations,
BERET [4] relies on dynamic control-speculation being unnecessary, etc.

1

https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/3307650.3322229

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Affine Indirect Pointer Chase
SPEC CPU 2017

CortexSuite

avg.

Figure 1: Prevalence of Streams

right decoupling distance? Which patterns should be expressible,
and can patterns be expressed in the presence of control flow? How
should the cache take advantage of this information?

Our goal in this work is to explore some possible answers to
these questions. The crux of our approach is twofold: 1. the ISA is
extended to express coarse grain streaming patterns, and 2. the core
pipeline is responsible to keep track of its relative index into each
stream. With such a design, we argue the following opportunities
are possible (depicted by Figure 2):
Opportunity 1: Stream-based Prefetching: Having knowledge
of access patterns and their relationship to the core’s control flow
can lead to a very effective stream-based programmable prefetcher.
The prefetcher can understand when exactly to make a request
based on how far ahead of the core the prefetch is. Similar to other
programmable prefetchers, this would enable the scheduling of
memory requests far past the limits of a traditional OOO core
processor’s instruction window.
Opportunity 2: Stream-decoupling: Stream primitives can fur-
ther be incorporated into the functional semantics of the program to
enable what we refer to as semi-binding prefetching. Following the
principle of decoupled access execute [11], a specialized memory ac-
cess engine would generate requests corresponding to streams, and
ordinary core instructions can access stream data through registers
that are mapped to this data (we call these pseudo-registers). There
are several potential advantages, including the removal of address
generation instructions from the general core pipeline, coalescing
accesses from related streams into a smaller number of requests to
cache, and also reducing the possibility of cache pollution through
timely, semi-binding prefetch.
Opportunity 3: Specialized Cache Policies: Streams are precise
definitions of an access pattern. Various caches policies could take
advantage of advanced knowledge of these patterns: replacement
policies, dead-block prediction, cache bypassing etc. One specific
idea is to let the cache bypass streams based on the expected foot-
print of the stream.

In this work, we propose the design of a stream specialized pro-
cessor (SSP), which exploits the opportunities of stream prefetch-
ing, stream decoupling, and stream-aware cache. We propose a
decoupled-stream ISA and associated extensions to an out-of-order
(OOO) processor, propose and implement compiler transforms for
this ISA, and evaluate in a cycle-level simulator. Our evaluation, con-
sisting of 33 workloads across SPEC CPU 2017 and CorexSuite [1, 2],
demonstrates 1.37× speedup and 1.36× energy efficiency improve-
ment over a baseline aggressive OOO core with stride prefetching.
Our contributions are:
• Stream Characterization: A study on the prevalence of
streams with exploitable characteristics, showing streams are
common, lengthy, and often interact with program control flow.

• Stream Specialization Principles/Mechanisms: The con-
cept of specializing multiple facets of general purpose proces-
sor execution (core, memory-interface, and cache) with stream
abstractions, along with the development of mechanisms which
leverage this information.

• StreamSpecialization ISA/Microarchitecture:A lightweight
set of ISA-extensions for applying stream-specialization to an
ISA, along with microarchitecture design for implementation
and integration with the core pipeline.

Paper Organization: In the remainder of the paper, we first
present an overview (§2), then discuss key related work from sev-
eral relevant areas (§3). We next characterize the prevalence of
streams (§4), and use this insight to propose ISA extensions for de-
coupling streams (§5). This is followed by a description of how the
new information is exploited in an SSP microarchitecture (§6), as
well as stream-aware prefetch and cache policies (§7). Finally, we dis-
cuss evaluation methodology (§8), results (§9), and conclude (§10).

2 OVERVIEW
In this section, we first make an argument for the requirements of
a stream-specialized interface. We then overview the approach, in
terms of the ISA and microarchitecture of the stream-specialized
processor (SSP), as well as the basics of how we exploit each stream-
specialization opportunity.
Stream ISA Requirements: In our stream-characterization study
(Section 4), we find that streams are common (>50% of dynamic
access), which is promising. However, some streams are shorter
(37% less than 100 accesses), streams often have indirect access
(about 11%), and streams often coexist with control-flow (>50% of
stream accesses). Based on this characterization, we argue that a
decoupled-stream ISA interface should have five qualities:
1 Integration-simplicity It should be lightweight and not re-
quire excessive core modification, while also efficiently conveying
stream patterns to hardware with low overhead for short streams.
2 Generality It should be able to capture both regular and irreg-
ular (indirect) memory access patterns.
3 Pattern-simplicity The stream definition should be analyzable
by hardware (for stream-aware cache policies).
4 Control under streaming It should enable control dependent
access, without interfering with the core speculation.
5 Abstract It should not expose the underlying microarchitecture.
Decoupled-stream ISAApproach: Streams are initialized through
a configuration instruction which defines the pattern. To commu-
nicate with the core pipeline, each stream is assigned a pseudo-
register, which is a register implicitly mapped to stream data. This
means that instructions which consume/produce stream data re-
main unmodified, which keeps the integration simple (req. 1).
Streams may specify other streams as dependences, which enables
generality across indirect types (req. 2). Streams are simple to ana-
lyze (req. 3), because there are only a handful of common patterns.

Streaming under control (req. 4) is possible because of how we
update the meaning of each pseudo-register, i.e. the data item a
pseudo-register corresponds to within the stream. Specifically, our
approach is to add a “step” instruction to the core, which indicates
the advancement of the stream from the core’s perspective. This

2

Program Order Traditional Out-of-order Stream-specialized OOO

...
loop_br

ctrl
addr_gen
ld a[i+1]
compute

...

iter
n

iter
n-1

iter
n+1

Core

ctrl
addr_gen

ld a[i]
compute

...
loop_br

In
st

ru
ct

io
n

 W
in

d
o

w
addr_gen

ld

loop_br

ld

compute

loop_br

Cache

...

Core

compute

In
st

ru
ct

io
n

 W
in

d
o

w

loop_br

loop_br

...

compute

compute

...

...

stream_cfg

addr

val
addr

val

lookup

respond

lookup

respond

loop_br

...
compute

Stream
addr, pattern

Stream FIFO

Long Latency

Opportunity 2. Decoupling stream access from OOO core.

Opportunity 1. Prefetching for
stream-based access, even in

the presence of control.

Opportunity 3.
Cache access is
stream-aware

Before Loop

ctrl

ctrl

ctrl

ctrl

ctrl

addr_gen

Miss, go
to L2

Miss, go
to L2

L2 Cache

respond

lookup
bypass l1

Figure 2: Overview of Decoupled-Stream Paradigm vs Traditional Out-of-Order

implies that data within the stream may be used multiple times, or
even ignored if not needed depending on core control flow.

Streams are general and ubiquitous, and therefore useful across
subsequent ISA generations (req. 5). The only aspect of the mi-
croarchitecture which is exposed is the number of pseudo-registers.
Microarchitecture Approach: We modify the core pipeline’s
front-end to track the position within each stream based on in-
terpreting step instructions. We add a stream engine to generate
addresses and interact with the memory system. Finally, we add a
load-stream FIFO (and store-stream FIFO), which core instructions
may access when loading (and storing) pseudo-registers. Streams
may be configured and accessed speculatively; and a simple proto-
col enables the rollback of stream positions and configurations on
misspeculation.
Opportunity 1: Stream-based prefetching: Stream requests are
decoupled from the core’s instruction window, enabling deep
prefetching for regular and irregular memory access. The primary
benefit of decoupling is reducing the negative impact of long-
latency memory accesses, without requiring a large instruction
window. Maintaining the relationship to the control-flow of the
core through the “step” instruction enables the prefetcher to keep an
accurate distance without running ahead and polluting the cache.
Opportunity 2: Stream-decoupling: The principle of stream-
decoupling is to create a direct interface between data which is
stream-prefetched, and the core instructions, eliminating the re-
dundant address generation which is typical of programmable
prefetchers, and simultaneously reducing instruction pressure on
the core pipeline. Besides, the benefits of vectorization of memory
are brought to traditionally non-vectorizable code; stream loads
fetch data in units of the L1 bandwidth, even though a particular
code may have too much control-flow to be otherwise vectorized,
and our design requires no vector-shuffling.

Decoupled streams are what we call semi-binding. They are bind-
ing in that they are obligatory and consume registers. However, they
are non-binding in that not all data must be consumed, and so the
hardware can ignore memory protection faults for non-consumed
data. Therefore, stream-decoupling keeps the benefits of binding
prefetch, even in the presence of control flow and indirect access.
Also, the prefetch distance can be controlled through dynamic
throttling, reducing the negative impact of being obligatory.

Opportunity 3: Cache Awareness: The stream engine has access
to high-level information regarding streams, through stream con-
figuration instructions. Using this information, and supplemented
by the access pattern, the stream engine can make requests to the
cache in a way that is aware of stream behaviors.

We specifically explore the idea of exposing the footprint of the
stream to the cache. A footprint is an under-approximation of the
total number of cache lines accessed. Knowing the footprint in
advance can lead to an enhanced cache bypassing policy, where
requests from a high-footprint stream (that would not fit in e.g. an
L2 cache) with low temporal reuse are bypassed to larger caches so
that they do not evict useful data.

3 RELATEDWORK
While the idea of stream-specialized general purpose processors it-
self is novel, it derives inspiration from and has an intimate relation-
shipwith at least fourmain areas of architecture research: specializa-
tion of address generation, decoupled access-execute, prefetching,
and cache policy enhancements.
Memory Interface Specialization: The concept of exposing pat-
terns of memory access as “streams” within an ISA perhaps origi-
nated with the Imagine Stream Processor [12], designed for media
processing. Following in their footsteps, a variety of specialized
architectures have employed stream abstractions, like RSVP [13],
Q100 [14], Softbrain [15], VEAL [16] and CoRAM++ [17]. None of
the above target a traditional general purpose out-of-order core
(e.g. no control speculation) or make a general cache stream-aware.

Memory Access Dataflow (MAD) [18] is a reconfigurable front-
end/memory-fetch engine for accelerators and SIMD units, but
does not use stream abstractions. MAD powers down the OOO core
pipeline while it is active, and also does not support exceptions or
control speculation. On the other hand, our approach extends the
OOO core and does not interfere with its capabilities.

A philosophically similar approach is XMem [19] and the locality
descriptor [20], which are cross-layer programming abstractions
for conveying memory semantics. The key difference is that our
ISA conveys semantics about each access at the instruction level,
rather than describing a memory region. This gives our ISA a more
fine-grain view of memory patterns.
Decoupled Access Execute (DAE): By encoding and performing
streamingmemory operations separately from the VonNeumann or-
der of the program, we are implementing a limited form of DAE [11]

3

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Outside Unqualified PC Indirect Affine

(a) Stream Breakdown (PC: Pointer-Chasing)
ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

>0 >50 >100 >1k

(b) Average Stream Length

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 >3

(c) Number of Control Paths

Figure 3: Stream Characterization

which is tailored to certain common access patterns. From that per-
spective, other DAE architectures exploit similar parallelism within
programs and can also hide memory latency [21, 22].

One example is Outrider [23], which supports multiple simulta-
neous decoupled inorder threads; our stream-generator supports
multiple concurrent streams. DeSC [24] is a recent example which
couples an OOO core with either a second OOO core or an acceler-
ator for the computation. DeSC adds compiler/architecture support
to break dependences for certain control-dependent and indirect
memory access patterns, which we also address in our work.

In the accelerator space, several designs decouple the datap-
ath, like DySER [5], CCA [3], Chainsaw [9] and ASIC accelera-
tors [8, 25, 26]. However, they are fundamentally limited by the
instruction window of the general purpose core for latency-hiding.
A recent work in this space is Buffets [27], which is a storage id-
iom for decoupled access-execute accelerators, enabling fine-grain
synchronization, flexible data-reuse and composability.
Runahead/Prefetching: Similar to DAE, prefetching also hides
memory latency. Stream-specialized processors have an advantage
over traditional hardware prefetchers (e.g. stride-based [28] and
indirect [29], spatial/temporal memory streaming [30–32], and ir-
regular correlating prefetchers [33]), in that the data they prefetch
is guaranteed to be accurate. Also, the stream-FIFOs can be seen as
software-exposed stream-buffers [34, 35], eliminating the overhead
of dynamic prediction as well as tag-checking in caches.

The type of prefetching performed with SSP is more similar to
software/execution-driven prefetching. For example, The stream-
generator can be viewed as a highly-specialized helper thread [36–
43]. Software prefetching [44] also exposes access patterns through
the ISA, and some recent proposals are highly programmable [45]
and can be compiler-directed [46].

SSP is different in two key ways: There is no redundant address
generation, and there is little potential for cache pollution. These are
due to SSP’s semi-binding prefetch, which eliminates the problems
with traditional binding using regular registers (too much register
pressure, cannot prefetch under faults or control flow).
Cache-Policy: Our cache-policy enhancements are inspired pri-
marily by prior works in cache bypassing, like those based on
reuse count [47–50]. Using the footprint for modifying the cache
replacement policy is inspired by prior cache insertion-policy tech-
niques [51, 52], which are designed to dynamically detect behavior

that we have available statically in the stream definition. We also
combine static and dynamic information about memory accesses for
cache bypassing, as was previously explored in the GPU space [53].

4 STREAM CHARACTERIZATION
A foundational question for a stream specialized processor (SSP)
is whether programs exhibit enough streaming behavior to take
advantage of. We define four key questions:
Q1 - Coverage: Do streams cover program access?
Q2 - Pattern:What are their access patterns?
Q3 - Length: Are streams long enough to be meaningful?
Q4 - Control: Are they entangled with the core’s control flow?

This section attempts to answer the above questions through a
trace-based analysis of streams. The observations both justify our
motivation and provide insights for the ISA and microarchitecture.
Stream Definition: For this analysis, we define a stream to be the
dynamic sequence of memory operations associated with a static
instruction, where the longest extent is defined as the entry and
exit of the outermost containing loop.
Desirable Properties: Extracting access patterns from memory
streams and decoupling them from the VonNeumann order of the
program is key to achieving high performance and energy efficiency.
However, certain memory streams are more amenable than others
for specialization. In particular, certain properties are desirable, so
we consider streams with these properties to be “qualified”:
• Within an inlinable loop: This is because saving and restor-
ing streams at function-call boundaries would be more expen-
sive than for a scalar register.

• Address is Control Independent:We intend to leave control
decisions within the non-stream portion of the program, so that
traditional speculative execution may take advantage. We dis-
qualify control-dependent address computation, as supporting
this would simultaneously eliminate the benefit of decoupling
(close interaction with non-stream instructions), andmake anal-
ysis by hardware for cache specialization more difficult.

• Affine Strides: This restriction keeps the hardware for streams
trivial (an integer ALU is sufficient) and also enables simple
analysis by cache specialization hardware.

Clarifications: Three clarifications are important. First, these prop-
erties only need hold up to some loop nesting level, because they
can be considered to start at that level. Second, data-dependent

4

streams (indirect and pointer-chasing) are still potentially quite
profitable to target, as their address is still control independent.

Third, it can still be profitable to target streams where not all
elements of the stream’s data are guaranteed to be used – i.e. the
memory access can be control dependent. Note that the access
being control dependent is orthogonal to the address being control
dependent, and control-dependent access is not disqualified.
Methodology:We profile SPEC CPU 2017 to capture general ap-
plication behavior, as well as CortexSuite [1, 2] to reflect the impor-
tance of data-processing. To analyze the workloads, we use dynamic
instrumentation and trace analysis. We exclude stack spilling ac-
cesses as it would inflate the number of affine stream accesses.
Q1 and Q2: Coverage and Type: Figure 3a shows the breakdown
of dynamic memory accesses. Memory accesses outside of inlinable
loops is labeled “outside”. Depending on its access pattern, each
qualified stream is further classified as affine, indirect or pointer-
chasing (PC). On average, 51.49% dynamic memory accesses belong
to affine streams, while 10.90% come from indirect streams and
0.3% from pointer-chasing streams. Although on average indirect
streams contributes less than 12%, for some benchmarks more than
40% of stream accesses are indirect, e.g. namd_r. These benchmarks
require efficient support for dependence between streams to achieve
high performance.

Observation 1:More than 60% of dynamic memory access in-
structions belongs to a stream with specializable properties.

Observation 2: Affine streams are the most common, while
indirect streams are also common for some benchmarks.
Q3: Length: Figure 3b shows the accumulated distribution of aver-
age memory stream length, weighted by their dynamic instruction
count. 51% of stream accesses belong to a stream of length at least
1000, and 62.1% come from streams with length at least 100. No-
tice that a stream of length N represents at least N loop iterations
(greater if we consider the reuse of stream elements). Combining
with other instructions within the loop, even a shorter stream may
span across a long instruction window if the loop body is large.

Observation 3: Streams are generally long enough to convey
meaningful patterns. However, shorter streams are common enough
to require low initialization overhead.
Q4: Interaction with Control: For general purpose workloads,
it is common for streams to coexist with the core’s control flow.
To characterize the degree of this interaction, Figure 3c shows
the accumulated distribution of stream accesses, grouped by the
number of control paths within the loop containing that static
memory access instruction. Loops with 3 or more control paths
contribute 27.7% of dynamic stream access.

Observation 4: Because many stream accesses coexist with
control flow, it is essential for the ISA to decouple control flow.

5 DECOUPLED-STREAM ISA
Informed by the insights of the previous section, and requirements
described in Section 2, we now define a decoupled-stream ISA.
We begin by describing the basic concepts, then elaborate with
examples. Finally, we discuss compilation support.

5.1 Decoupled-Stream Concepts
The following are the essential components of the ISA extensions:
• Streams: Streams are decoupled portions of the programwhich
together generate memory accesses. They are explicitly con-
structed and deconstructed (stream_cfg and stream_end in-
structions), and their data can be accessed by traditional in-
structions through pseudo-registers.

• Stream Types and Dependence: There are two stream types:
memory streams describe a memory access pattern; induction
streams define a repeating pattern of values. Memory streams
are dependent on either 1. induction variable streams (affine
access patterns), 2. other memory streams (indirect access pat-
terns), or 3. themselves (pointer-chasing).

• Pseudo-registers and Stream Stepping: A pseudo-register
is a register which refers to a stream’s data. The meaning
of the register, the position into the stream, is updated by a
stream_step instruction to the associated induction variable
stream. In other words, a stream_step advances the pseudo-
register position of all dependent streams.

• Memory Semantics and Architecture State: Semantically,
a load occurs at the point of the first use of a pseudo-register cor-
responding to a load stream after stepping or configuring, while
a store happens at every write to a pseudo-register of a store
stream. Pseudo-registers become part of the architecture state
after their first use, and are removed from architecture state
after stepping the corresponding induction variable stream.

• Pseudo-register Width: Pseudo-registers have a definable
width, which determines the amount of data read by each step
instruction. Instructions which access narrower portions of the
register specify an offset.

5.2 Stream-ISA Extensions
To explain the ISA intuitively, we describe its principles and poten-
tial through a series of examples which stress its different aspects.
Figure 4 shows five codes, with the decoupled-stream pseudo code,
and the stream dependence graph.
Basic Operation – Figure 4(a): The example is a dense vector ad-
dition, using three affine streams. There are two load streams (a[i],
b[i]) and a store stream (c[i]), which are both dependent on an
induction variable stream (i). Each stream is assigned a pseudo-
register, which is used by the traditional instructions to interact
with streams. Next we explain the use of stream instructions.

stream_cfg: A stream_cfg instruction is inserted before en-
tering the loop which uses the stream’s data. It defines all of
the streams within this loop level, including their type (induc-
tion/memory), pattern (stride, width, and optional length), depen-
dences, and starting address2. This interface conveys stream infor-
mation at a coarse granularity, using a stable interface.

In practice, after configuration is complete, the hardware may
begin fetching data ahead of the core’s requests based on the pro-
gram. Also, note that the stream’s data never needs to be consumed,
though an unused stream would occupy a pseudo-register.

2This can be implemented with a series of instructions for each stream. While this is
shown abstractly in the figure, in our implementation it is an instruction cache load of
configuration data, interpreted by the hardware.

5

int i = 0;
while (i < N) {
 c[i] = a[i] + b[i];
 i++;
}

s_i

s_c s_a s_b

stream_cfg(s_i, s_a, s_b, s_c);
while (s_i < N) {
 s_c = s_a + s_b;
 stream_step(s_i);
}
stream_end(s_i, s_a, s_b, s_c);

int i = 0;
while (i < N) {
 c[i] = a[b[i]];
 i++;
}

s_i

s_c s_b

s_a

stream_cfg(s_i, s_a, s_b, s_c);
while (s_i < N) {
 s_c = s_a;
 stream_step(s_i);
}
stream_end(s_i, s_a, s_b, s_c);

int i = 0, j = 0, v = 0;
while (i < N && j < N) {
 if (a[i] < b[j]) {
 v += c[i];
 i++;
 } else {
 j++;
 }
}

s_i

s_a s_b

s_j

stream_cfg(s_i, s_a, s_c, s_j, s_b);
while (s_i < N && s_j < N) {
 if (s_a < s_b) {
 v += s_c;
 stream_step(s_i);
 } else {
 stream_step(s_j);
 }
}
stream_end(s_i, s_a, s_c, s_j, s_b);

int i = 0;
while (i < N) {
 b[i] = a[i].x
 + a[i].y;
 i++;
}

s_i

s_b s_a

stream_cfg(s_i, s_a, s_b);
while (s_i < N) {
 s_b = s_a.x + s_a.y;
 stream_step(s_i);
}
stream_end(s_i, s_a, s_b);

a)

b)

c)

d)

s_c

Legend
i, s_i, : induction variable stream
a[i], s_a, : memory stream

Original C Code Stream Decoupled Pseudo Code Stream Dependency Graph

int i = 0;
while (i < M) {
 int j = 0;
 while (j < N) {
 sum += a[i][j];
 j++;
 }
 i++;
}

int i = 0;
stream_cfg(s_j, s_a);
while (i < M) {
 while (s_j < N) {
 sum += s_a;
 stream_step(s_j);
 }
 stream_step(s_j);
 i++;
}
stream_end(s_j, s_a);

s_a

e)

s_j

Figure 4: Pseudo Code Examples

stream_step: As described earlier, the stream_step instruc-
tion advances the pseudo-register position of the induction variable
and dependent streams. In this example, stepping s_i will also
advance s_a, s_b and s_c by one element. This highlights how the
approach of implicitly stepping dependent streams avoids redun-
dant step instructions.

An alternative decoupled ISA could have used a “destructive read”
interface, where a read of a pseudo-register implicitly advances the
state. This would have worked well in this example, eliminating
the need for the step instruction. However, this would not allow
control-dependent access, described shortly.

stream_end: The stream_end instruction deallocates a set of
streams from the corresponding pseudo-registers. Generally this
happens after the loop in which the stream use occurred, as it does
in the running example. Also note that an explicit stream_end
enables the termination of a stream to be data dependent.
Indirect Memory Access – Figure 4(b): Indirect memory access
is supported by making the address of one memory stream depen-
dent on the value of another. In this example, s_a is dependent on

 ...
.LBB0_1:
 movsxd rdx, r8d
 mov edi, [4*rdx + a]
 movsxd rcx, eax
 cmp edi, [4*rcx + b]
 jge .LBB0_3
 add esi, [4*rdx + c]
 add edx, 1
 mov r8d, edx
 cmp r8d, 1023
 jle .LBB0_5
 jmp .LBB0_6
.LBB0_3:
 add eax, 1
 cmp r8d, 1023
 jg .LBB0_6
.LBB0_5:
 cmp eax, 1024
 jl .LBB0_1
 ...

 ...
 s_cfg
.LBB0_1:
 cmp s2, s3
 jge .LBB0_3
 add esi, s4
 s_step s0
 cmp s0, 1023
 jle .LBB0_5
 jmp .LBB0_6
.LBB0_3:
 s_step s1
 cmp s1, 1023
 jg .LBB0_6
.LBB0_5:
 cmp s1, 1024
 jl .LBB0_1
.LBB0_6:
 s_end
 ...

Register to Stream Mapping
r8d -> iv stream s_i
eax -> iv stream s_j
[4*rdx + a] -> memory stream s_a
[4*rcx + b] -> memory stream s_b
[4*rdx + c] -> memory stream s_c

Stream to Pseudo
Register Mapping
Stream s_i -> s0
Stream s_j -> s1
Stream s_a -> s2
Stream s_b -> s3
Stream s_c -> s4

Original Stream Specialized

Figure 5: Assembly Example

s_b. We also refer to s_b as the base stream of s_a. Note that s_a
is also stepped with the stream_step of s_i.
Control Flow – Figure 4(c): The stream_step interface enables
the ISA to specify control-dependent access, meaning that a stream
element may be used 0 times, once or many times. This example iter-
ates over the elements of a[i] and b[j], but their relative ordering
is data dependent. This is implemented by conditionally stepping
stream s_i and s_j depending on the outcome of the comparison.
Having a stream_step instruction makes it trivial to support such
a scenario, by simply replacing the increment instruction with a
corresponding stream_step.

Notice that in this example, not every element of s_c will even-
tually be used. In a traditional ISA, such unused elements make
it harder for the memory system to figure out the access pattern
and prefetch for future elements. With the help of the compiler
and the support of explicit control on when to step the stream, we
effectively decouple the access pattern from the control flow. This
also enables a new opportunity for the hardware, as now it knows
the addresses and can speculate whether the stream element will
be used and whether it should prefetch.
Coalescing Streams – Figure 4(d): In some situations, memory
accesses patterns become more regular when coalescing from two
static instructions. A common scenario is iterating through an array
of structs, as shown in the example. Here the streams accessing
x and y fields can be coalesced into a single stream, where the
pseudo-register width is now 8 bytes. This reduces the total number
of streams, and also makes the access pattern contiguous.

To support this, the user of a pseudo-register may add an
immediate-offset parameter to specify the offset from the head
of the pseudo-register3. In this example, s_a.y has an offset of 4
bytes.

3In theory, this support could be added to the ISA through extending each instruction,
or adding a header byte to specify the offset. In our implementation we added this
information to the stream configuration.

6

Nested Loops – Figure 4(e): It is sometimes advantageous to con-
figure a stream at an outer loop level to increase the length. This
example iterates over a 2D array, and is transformed into a single
memory stream. Because N is known and there is no conditional
stepping, the affine access pattern can be determined before enter-
ing the outer loop. Note that we need an additional stream_step
after the inner loop to skip the unused exiting iteration of j=N. The
induction variable i is not specialized as a stream in this example,
but implicitly encoded in the configuration of s_a.

5.3 Pattern Limitations and Speculation
The address patterns that we support are limited to those which are
decouplable, i.e. determined at the point of configuration. There are
two relevant caveats: 1. data may be conditionally used, and 2. the
outermost dimension of the pattern can have an unknown length.
This corresponds to the two forms of speculation that we allow for
address patterns: that cache lines in the pattern are likely useful,
and that streams are long enough that the overhead of loading a
few extra items is acceptable.

This has implications for how many loop levels we can hoist up
the configuration of a stream. If at a given outer-level either the trip
count of the inner loop becomes unknown, or the induction variable
becomes conditionally stepped, then the decoupling invariant can
no longer be maintained.

5.4 Compiler Support
We implement compiler support to identify streams and transform
the original program to decouple streams. Our implementation
uses LLVM. There are three phases: recognizing stream candidates,
selecting qualified candidates, and code generation.
Recognizing Stream Candidates: The compiler treats every
static memory access instruction in a loop as a candidate for a
memory stream, and every ϕ node in the loop entrant basic block
as an induction variable stream. ϕ nodes not in the loop entrant
basic block represent other control dependent values and are not
considered as candidates. Starting from the candidate instruction,
the compiler performs a backwards search on its operands, gath-
ering instructions until it encounters a loop-invariant, a constant,
or another candidate instruction. It will also record dependences
between stream candidates.
Selecting Stream Candidates: After finding the candidates, the
compiler identifies all candidates qualified for stream decoupling.
First, a candidate can only be qualified if it has a simple enough
pattern to match the supported affine, indirect, and pointer chasing
patterns. Specifically, it can not contain any ϕ node, which rep-
resents control-dependent address generation. Also, it should not
contain any unsupported operations, e.g. floating point operations.

Second, the compiler checks the dependencies between streams.
A trivial constraint is that if any of its base streams within the
same loop level is unqualified, the stream is unqualified. A more
sophisticated case is to handle multiple induction variables. To
support configuring streams in outer loops, if the address pattern
limitations in 5.3 are satisfied, we remove the dependency on any
outer loop induction variable so that the memory stream depends
on only one inner most induction variable (iteration domain is

incorporated into the inner loop variable). If this is not possible,
then the stream becomes unqualified.

During this phase, the compiler coalesces affine streams with the
same induction variable and small offset between their elements.
The compiler will also drop some qualified streams if the total
number of streams exceeds the maximum. The compiler prioritizes
memory streams with no dependent streams to drop, as they are
less likely on the critical path.

Similar to some priorwork [18, 54, 55], we take a hardware/software
codesign approach to memory aliasing. The compiler records which
loads and stores may alias, so that non-aliasing streams can bypass
the core’s LSQ.
CodeGeneration:During the code generation phase, the compiler
first generates the stream configuration for the selected candidates.
The configuration specifies 1. which pseudo-register to represent
the stream; 2. the type of the stream (induction, load, store); 3. loop
invariant values (stride, width); and 4. stream dependences.

The compiler transforms the loop by 1. inserting stream_cfg,
stream_step and stream_end instructions; 2. replacing the operand
of a user instruction with the corresponding pseudo register, along
with the offset within the element (for a coalesced stream); 3. re-
moving the memory access instruction for a memory stream, and
possibly insert a dummy user instruction to ensure the original pro-
gram order is preserved; and 4. if there are no other users, remove
the address computation instructions.

Figure 5 shows both the original and transformed X86 assembly
code for example in Figure 4(c). The stream operands are replaced
by the corresponding pseudo-registers.

6 MICROARCHITECTURE EXTENSIONS
A traditional processor can be extended with a small number of
relatively simple structures to create a stream-specialized processor
(SSP), as we depict at a high level in Figure 6. SSP extensions have
four basic responsibilities: 1. Maintain the core’s view of stream
position based on configuration and stepping instructions; 2. Main-
tain the streams’ decoupled view of their state, and allow streams
to issue memory requests; 3. Maintain the data which is decoupled
between the core’s view and the streams’ view, and enable core
instructions to access this data; and 4. Keep the above consistent
during misspeculation and exceptions. We overview each of the
corresponding components:
Core’s view – Iteration Map: The frontend of the pipeline main-
tains the iteration map (Figure 8), which counts iterations of
induction-variable streams, as seen by dispatch. A stream_cfg
instruction updates the mapping from the stream index to itera-
tion count table. A stream_step increments the iteration count
table. User instructions of a stream access the table to ascertain the
current iteration, which is used to index into stream FIFOs.
Streams’ View – StreamEngine: The stream engine is the central
component of a stream-specialized design, as shown in Figure 7. It
contains an induction table to hold iterator parameters, and a load
engine and store engine, which generates load and store requests
to memory. Multiple streams may be mapped to each engine.

To explain the operation, first, a stream_cfg instruction will
load data to the stream engine’s configuration unit. This will ini-
tialize the designated streams and parameters on the load and store

7

ICache

Decode

Register
File

Execution
Pipeline

Stream
Ld FIFO

Fetch Dispatch Execute Memory Writeback

Stream
Engine

Config

Cache
Load Data

Iter. Map

Stream
St. FIFO

(to reg. file)

Store
data

Iter. step

PEB+LSQ

DCache

Figure 6: Stream-specialized Pipeline

Iteration Update
(address gen.)

D
ef

in
it

io
n

Load
Engine

Config.
Unit

Cache
load

Store
FIFO

Stream
Config.

St
at

e

O
pe

ra
n

ds
(i

n
d

ir
ec

t)

St
re

a
m

 T
ab

le
s

Iteration Update
(address gen.)

D
ef

in
it

io
n

St
at

e

O
pe

ra
n

ds
(i

n
d

ir
ec

t)

St
re

a
m

 T
ab

le
s

Cache
Data

Stream SelectStream Select
Stream FIFO
Occupancy

Indirect data bus

config
bus

Store
 Engine

Figure 7: Stream Engine

Iter. Count

Stream Map
Ind. Var

Index
3 0

Stream
 Index

7

Figure 8: Iteration Map

engines. When the unit receives notice of a committed stream_end,
the associated stream is deallocated from the load or store engine.

The load and store engine maintain three tables describing the
state of any stream. The first is the stream’s definition, containing
the pattern (affine, indirect, linked) and parameters (stride, width).
The second is the stream’s state, essentially the memory-side view
of the induction variables. This is where the current address is
stored. Finally are operands, which store any dependences on the
data of other streams (for indirect streams). Each stream can have
up to two dependences on other streams, and for each dependence,
we keep enough space for four iterations worth of storage for any
given dependence to run-ahead.

Each cycle, the stream select unit picks a stream based on the
readiness of corresponding operands (if any) and whether remain-
ing FIFO entries are allocated to the stream (see Section 7.1 on
page 9 for allocation policies). Requests are in units of per-port L1
cache bandwidth (64 bytes in our design). In parallel with sending
the request, the stream’s state is updated for the next iteration.
Decoupled Data – Stream FIFOs: The stream FIFOs are responsi-
ble for holding decoupled state either from or to memory (load and
store FIFO). We use an implementation similar to the dynamically
partitioned queues of Outrider [23], which use a pointer table to
virtualize a single wide buffer into multiple FIFO queues (in our
case, one for each concurrent stream). For core instructions which
consume stream data, they would access the load stream FIFO in-
stead of the register file4. For stores to streams, core instructions
only produce values, and addresses are produced by the stream en-
gine. These are combined at the store stream FIFO before sending
to the memory system.
Control Mispeculation: Stream requests and uses are speculative
to avoid pipeline serialization. We discuss implementation in the
context of an R10K [56] style merged register file. To maintain the
core’s view, during mispeculation rollback while the map table is
being reverted using register mapping information stored in the

4An alternate design could partition the physical register file for use as a stream-FIFO.

core’s reorder buffer, the iterationmap is also similarly decremented
for each mispeculated step instruction. If no stream_cfg instruc-
tion is mispeculated, only the core’s view of the stream is reverted,
because the addresses for streams are control independent. This
means we achieve a low-cost form of selective replay [57] by virtue
of semi-binding prefetch.

When reverting a stream_cfg instruction, both the core’s view
and streams’ view is reverted. On the core side, the stream map
entries are freed, and the corresponding streams are de-configured
within the stream engine. Data stored within decoupled FIFOs
corresponding to these streams is flushed.
Precise State and Context Switch: Precise state and exceptions
can be supported using the same speculation recovery mechanisms
as above. Because the stream configuration and pseudo-register
values (specifically those which have not been stepped since the
last use) are part of the architecture state, they must be saved on
context switch. These items amount to less than 1KB for our design.
Interaction with Memory: Before issuing a stream request, the
virtual address is translated by the core’s MMU. Access to TLB can
be delayed to favor core loads, but address translation needs only
occur once per-page for affine streams with low stride, reducing
TLB access in the common case.

Because stream-loads effectively aggressively reorder loads, may-
alias streams require memory disambiguation and recovery. For
this, the stream engine relies on the core’s LSQ to perform mem-
ory disambiguation, along with its memory dependence predictor
(similar to MAD [18]). When dispatching a core instruction that
semantically triggers the memory access, it is inserted into the
core’s LSQ as a normal load/store. In order to detect RAW depen-
dence between a store and a prefetch stream element, the stream
engine also maintains a prefetch element buffer (PEB). The PEB
can be considered a logical extension of the LQ, which contains
the prefetched elements by the stream engine. Elements in the PEB
are freed when the first use is dispatched, or when the element
is released as unused. Traditional memory order checking is per-
formed between SQ and LQ + PEB. Hitting in the PEB indicates a
misordered stream access, and the streams’ view should be reverted.
Overall, may-alias streams can still be aggressively reordered, but
do not reduce the LSQ-energy.

8

To implement a non-relaxed memory model, SSP needs to be
integrated with the core’s memory-consistency speculation mecha-
nism (e.g. if relevant coherence state changed, flush core pipeline
and roll back streams’ view).

Finally, because the ISA semantically only performs memory
operations if a pseudo-register is accessed, memory faults from
prefetching stream requests are delayed until the execution of the
corresponding user instruction. Faults are silently ignored if the
FIFO entry is unused.

7 STREAM-AWARE POLICIES
Here we describe how to leverage stream-information to design
effective prefetching and stream-aware cache bypassing policies.

7.1 Stream Prefetch Distance and Throttling
One common problem for prefetching is to determine a suitable
prefetch distance. An ideal prefetcher would bring in the data pre-
cisely when the user instruction is ready to be issued. Thus, a
waiting user instruction is an accurate signal that the prefetcher
is falling behind. It is straightforward to leverage this information
within a decoupled-stream microarchitecture, as the user instruc-
tion checks the readiness of the FIFO entry before issuing. Since the
data is prefetched into the FIFO, allocating a different number of
FIFO entries to a stream will effectively change its prefetch distance.

A simple policy would be to split the FIFO evenly for all stream
pseudo-registers. This reduces the hardware complexity to manage
the FIFO. However, this leads to a low utilization, as FIFO entries
for unassigned pseudo-registers will be wasted. Also, streams with
different memory footprints may hit in different cache levels, and
require different prefetch distances to hide the memory latency. A
better policy is to dynamically allocate FIFO entries on-demand.
Dynamic Throttling: We implement a stream-aware dynamic
throttling policy. Each stream is assigned a FIFO occupancy N . As-
sociated with each FIFO entry is a 1-bit late flag, which is set by the
issue logic when the stream operand is the last operand to be ready.
Each stream is assigned a 3-bit late_counter. When releasing a
FIFO entry, the late_counter is incremented if late is set, and
decremented otherwise. When the late counter reaches a threshold
(currently 7), the stream is considered lagging behind the core and
its N is increased (by 2) if N is smaller than a maximum threshold
T and the sum of all configured streams’ N does not exceed the
total FIFO size. Having a maximum size T avoids the pathological
case when a stream occupies most of the FIFO. N is initialized to
a small value when configuring the stream, which helps capture
different behaviors of the same stream during different phases.
Possible Extensions: The compiler could provide a suggested
initial value for N when generating stream configurations, by lever-
aging the information of stream memory footprints, profiled la-
tency, etc. Another opportunity is to use the dependencies between
streams to prioritize those with dependent streams, as they are
more likely on the critical path. These are left to future work.

7.2 Stream-Aware Cache Bypassing
Caching data with low temporal locality unnecessarily wastes the
cache capacity and hurts the performance. It is beneficial to identify
and bypass such requests.

Field Description Field Description
sid Stream id miss # cache misses
footprint Est. mem. footprint reuse # cache reuses
request # stream requests bypass Whether to bypass

Table 1: Fields of Stream Table

Our insight is that streams inherently contains useful informa-
tion for the cache to make such a bypassing decision, e.g. mem-
ory footprint, stream length, reuse distance, etc. Ideally, the cache
should bypass a stream when the storage required to achieve tem-
poral reuse is beyond its capacity. Bypassing correct streams brings
two major benefits: 1. It avoids polluting the cache with data that
will not be reused; and 2. Since a bypassed stream is not cached,
the cache can speculate that a request from that stream will miss
and immediately forward the request to the next level of cache
without waiting for the tag lookup or allocating an MSHR. Tag
lookup is still necessary to detect misspeculation, but it is removed
from the critical path for the common miss case. Not allocating an
MSHR increases memory parallelism by allowing more misses to
be handled simultaneously.

To better understand how stream information can help cache
bypassing, consider the following examples:

Example 1: Repeatedly iterating over two affine streams, where
the cache can hold only one stream. Without bypassing, the cache
tries to keep both streams, and results in a 0% hit rate. With the
footprint of the stream, the cache can reason that the total storage
required to cache both streams is beyond its capacity, and thus
bypass one stream. The other stream now can be fully cached,
which improves the hit rate to 50% and reduces the bandwidth
pressure to lower cache levels.

Example 2: Iterating over one large affine stream that can not
fit in the LLC. In such a case, there are no benefits to caching it.
Bypassing it will increasing the memory parallelism. The benefit
of stream-awareness is knowing the footprint at the time of stream
configuration.

While useful, stream information is not sufficient to handle all
situations. For example, it is impossible to accurately estimate the
memory footprint of an indirect stream. Also, there may be some
temporal reuse from non-stream requests, and bypassing the cache
for such a stream hurts the performance.

To mitigate this, a hybrid policy is used to leverage both the
stream information and dynamic statistics. In the cache, a stream
is identified by the stream_cfg’s PC and pseudo-registers (sid).
Some lower bits of the PC are used to distinguish streams with the
same pseudo-register from different regions. We augment the cache
with a stream table. Table 1 gives a basic description of each field of
the stream table. An sid field is also added to the tag representing
which stream brought in this cache line.

Stream Configuration: After configuration, the stream engine
will send a request to the cache, which contains all configured
streams’ sids and their memory footprints. For affine streams with
known length at configuration time, their memory footprint can
be estimated by the stream engine from the configuration. If not,
it sets the memory footprint to 0, and the cache will exclude this
information when making bypassing decisions. The cache fills in
the corresponding stream table entry when receiving this request.

9

Not
Bypass

Bypass

Receive NOT_BYPASS message
from lower level cache

High miss count &&
Low reuse count &&

(Memory footprint > Cache Capacity
|| Memory footprint == 0)

High reuse count

Send NOT_BYPASS message

to higher level cache

Figure 9: State Transition for Cache Bypassing

Requests generated by the stream engine contains the stream’s sid.
The cache looks up the stream table to check if it should bypass.

Non-Bypass Stream Requests: If bypass is not set, the re-
quest is treated as a normal request. The cache updates the stream’s
dynamic information by: 1. Incrementing the access counter. 2.
If missed, incrementing the miss counter. When the cache line is
brought in from the lower level cache, it sets the sid field of the
tag to the request stream’s sid so that reuse information can be
tracked. 3. If hit, and the sid of the tag is valid, incrementing the
reuse counter of that stream.

Bypass StreamRequests: If the stream is bypassed, i.e. bypass
is set, the cache will forward the request directly to the lower level
cache without waiting for its tag lookup or allocating MSHRs. 1. If
missed, the cache forwards the future response from the lower level
cache without caching it. 2. If hit, the cache responds normally and
drops the future response from the lower level cache.

Bypassing Decision: Figure 9 shows the FSM making bypass-
ing decisions. The cache reconsiders its decision for a stream when
its access counter hits a threshold. A stream satisfies the condition
in Figure 9 is marked as bypassed. On the other hand, streams with
a high reuse count may also have a high reuse rate at the higher
level cache. In such a case, the cache will send a NOT_BYPASS mes-
sage to the higher level cache to cancel its bypass decision. The LLC
never bypasses any stream. The cache also clears the access, miss
and reuse counter after reconsidering the bypassing decision. This
is to ensure that the stream table captures the changing dynamic
behavior of the stream at run time.

8 METHODOLOGY

Simulation and Compilation: For the simulation, we model an
out-of-order processor with a modified version of gem5 [58], ex-
tended with support for decoupled-stream ISA extensions and the
proposed microarchitecture. As described, we use an LLVM-based
compiler to identify streams and transform the program. The simu-
lation is carried out with an approach similar to Aladdin [59, 60] and
TDG [61, 62], where compiler transforms are applied to a dynamic
dependence graph (DDDG) of LLVM IR operations. We generate
wrong-path addresses of streams in the DDDG to ensure fair ac-
counting of unused elements.
Common Parameters: Table 2 summarizes the parameters of the
baseline system. We use McPAT [63] for energy estimation, ex-
tended to model the stream engine. For the number of pseudo
registers, we choose 24, as it is sufficient to cover most of the hot
regions in benchmarks we simulated.
Baselines/Configurations:We compare against the following:

CPU 2.0GHz 8-Way OoO Cores
8-wide fetch/issue/commit
64 IQ, 32 LQ, 32 SQ, 192 ROB

256 Int RF, 256 FP RF
speculative scheduling

Function Units 6 Int ALU (1 cycle)
2 Int Mult/Div (3/20 cycles)

4 FP ALU (2 cycles)
2 FP Mult/Div (4/12 cycles)

4 SIMD (1 cycle)
Private L1 ICache 32KB / 8-way

8 MSHRs / 2-cycle latency
Private L1 DCache 32KB / 8-way

8 MSHRs / 2-cycle latency
Private L2 Cache 256KB / 16-way

16 MSHRs / 15-cycle latency
To L3 Bus 16-byte width

Shared L3 Cache 8MB / 8-way
20 MSHRs / 20-cycle latency

DRAM 2 channel / 1600MHz DDR3 12.8 GB/s
Table 2: Simulation Parameters for Baseline

Stride Prefetching (Pf-Stride): In this configuration, we add a
PC-based stride prefetcher to all three cache levels. The prefetcher
takes 1 cycle to generate the prefetch request and it prefetches for
8 requests ahead.

Ideal Helper Thread Prefetching (Pf-Helper): As discussed
earlier, helper-thread approaches [36–43] are a form of aggressive
execution-driven prefetching. We evaluate against an ideal SMT-
based helper-thread approach, which consumes no core resources
(e.g. ROB, RF)5. The helper thread is fixed to run k dynamic instruc-
tions ahead of the main thread to prefetch the data. We experimen-
tally found k = 1000 is sufficient to bring significant speedup for
the main thread.

Non-Binding StreamPrefetching (SSP-Non-Bind):This con-
figuration is a limited version of SSP, where the compiler only rec-
ognizes the stream and inserts stream instructions, i.e. stream_cfg,
stream_step and stream_end. This configuration only uses the
stream engine as a prefetcher, and the data fetched is stored in cache.
If not specified, we use a 192-entry FIFO for this configuration, with
8 entries per stream. Since most streams will have element size less
than or equal to 8 bytes, we set the FIFO entry size to 8 bytes. Note
that throttling is not possible in SSP-Non-Bind as there are no user
instructions.

Semi-Binding Stream Prefetching (SSP-Semi-Bind): This
configuration is the same as SSP-Non-Bind except that we use
the full decoupled-stream ISA, which has the additional benefits
of semi-binding streams and address-computation specialization.
If not specified, the dynamic throttling policy from Section 7.1 is
enabled.

Stream-Aware Cache (SSP-Cache-Aware): This configura-
tion is built upon SSP-Semi-Bind, but with the stream-based cache
bypassing policy described in Section 7.2.

We simulate 33 benchmarks from the SPEC CPU 2017 and Cor-
texSuite [1, 2]. We exclude all Fortran benchmarks from SPEC CPU
5Properly allocating resources and choosing an instruction slice for a helper thread is
the subject of much research, so we abstract here.

10

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5 SSP-Cache-Aware

SSP-Semi-Bind
SSP-Non-Bind
Pf-Helper
Pf-Stride

(a) Overall Speedup

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 SSP-Cache-Aware

SSP-Semi-Bind
SSP-Non-Bind
Pf-Helper
Pf-Stride

(b) Energy Efficiency

Figure 10: Overall Speedup and Energy Efficiency

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8 2.1x->

Figure 11: Speedup of SSP-Non-Bind. vs. SSP-Semi-Bind

2017 due to incompatibilities with our current framework. We use
the reference input set for SPEC and the largest provided input set
for CortexSuite. We use SimPoint [64] to select multiple represen-
tative simpoints for simulation from the first 10 billion dynamic
instructions. Each simpoint contains 10 million dynamic instruc-
tions, and on average 10 simpoints are selected for each benchmark.
After cache warm-up, we simulate the simpoints and compute the
total execution time and energy based on each simpoint’s weight.

9 EVALUATION
Our evaluation studies the benefits from the three potential op-
portunities: stream-prefetching, stream-decoupling, and cache-
awareness. We first analyze the overall benefit, then discuss each
aspect, and end by discussing the integration with different cores.
Overall Benefit: Figure 10a shows the speedup of all the configura-
tions over the baseline OOO core. Stride prefetching achieves 1.22×
speedup, while ideal helper thread yields 1.50× speedup. For SSP,
non-binding stream prefetching achieves 1.20× speedup, which
is similar to stride prefetching. Semi-binding stream prefetching
achieves 1.53× speedup, which outperforms even the ideal helper
thread. The main reason is that semi-binding removes the instruc-
tion overhead for address computation. It also does not generate

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Added Insts
Remain Insts

Figure 12: Dynamic Instructions in SSP-Semi-Bind

duplicate memory requests to L1. Finally, stream-aware cache re-
sults in 1.67× speedup over the baseline OOO core.

Figure 10b shows the overall energy efficiency of all the configu-
rations over the baseline OOO core. Stride prefetching improves
the energy efficiency by 1.12×, while ideal helper thread achieves
1.16×. Non-binding stream prefetching slightly increases the en-
ergy efficiency by 1.09×, while semi-binding stream prefetching
gives a significant improvement to 1.47×, as semi-binding removes
much instruction overhead. Finally, making the cache stream-aware
achieves 1.53× energy efficiency.
Benefits of Semi-Binding Stream Prefetching:

Themajor benefit of semi-binding stream prefetching versus non-
binding stream prefetching comes from a combination of removing
address computation from the pipeline and reducing traffic to the
L1 cache. Figure 11 shows the performance of semi-binding stream
prefetching, normalized over non-binding stream prefetching. Both
configurations use a 192-entry FIFO without throttling. Overall,
compared to non-binding prefetching, semi-binding prefetching
achieves 1.26× speedup.

Figure 12 shows the number of dynamic instructions committed
in semi-binding prefetching, normalized to the original program.
On average, semi-binding prefetching removes 35% of the dynamic

11

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00 same FIFO with throttling

192-entry FIFO, non-throttling
144-entry FIFO, non-throttling
96-entry FIFO, non-throttling
72-entry FIFO, non-throttling

Figure 13: Speedup with Dynamic Throttling

instructions from the original program, while adding back only 5.6%
to control the stream engine. Most of the new instructions added
are stream_step instructions which advance the stream FIFO –
in most cases one per loop iteration. An extreme case is svm from
CortexSuite. The hot regions of this benchmark involve small matrix
multiplication, which has a small memory footprint. The L1 data
cache has less than 1%miss rate, and this explains why neither stride
prefetching nor ideal helper thread can improve the performance.
When cache is not the bottleneck, semi-binding stream prefetching
achieves 1.48× speedup over non-binding stream prefetching for
svm. A similar analysis also applies to texture_synthesis.
Dynamic Throttling: Figure 13 shows the performance of semi-
binding stream prefetching with various FIFO sizes and throttling
policies, normalized to the configuration with a 72-entry FIFO,
non-throttling configuration. Compared with an evenly distributed
policy, dynamic throttling improves the performance themost when
the FIFO is small, as it achieves a better utilization for the FIFO by
allocating more space to streams lagging behind the core. With a 72-
entry FIFO, dynamic throttling improves the performance by 13%,
while for a larger 192-entry FIFO, it yields a marginal improvement
of 5%.

An extreme case is multi_ncut, where most of the execution
time is spent on a simple loop which iterates through a matrix and
generates sorted indexes. The matrix is too large to be cached in
L2, and 68.7% of the memory accesses in this loop goes to L3 cache.
Since one stream FIFO entry corresponds to one loop iteration when
it is unconditionally stepped, the maximum effective prefetch win-
dow measured in dynamic instructions is the number of dynamic
instructions per iteration times the FIFO entries allocated for that
stream. As the loop body contains only 9 static instructions, the
effective prefetch window achieved by a non-throttling policy is
not large enough to fully hide the L3 cache latency.
Unused Stream Requests: Since we are decoupling the stream
pattern from the control flow, it is possible that the stream elements
are fetched from cache into the stream FIFO but never used by the
core. Figure 14 shows the percentage of unused requests issued by
the stream engine to the L1 cache in SSP-Semi-Bind. The average
unused stream requests is 11.1%. An extreme case is namd_r, which

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

av
g.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65 Unused Stream Requests

Figure 14: Unused Stream Requests

has 66% of unused requests. This is partly because some stream ele-
ments are unused due to control flow, but also some stream elements
are prefetched beyond the termination of the stream (stream_end);
this is more common for shorter streams. However, these unused
stream requests may still be useful as the fetched data may be
used by future accesses. It is also possible that the unused stream
requests may hit in the L1 cache and do not increase the overall
memory traffic. The overhead is mainly the extra pressure on the
bandwidth between the core and the L1 cache.
Stream-AwareCache: Figure 15 shows the performance of stream-
aware cache, normalized by the performance of semi-binding
stream decoupling. Stream-aware cache supports stream-based by-
passing (see Section 7.2). Both configurations use a 192-entry FIFO
with dynamic throttling.

Stream-aware cache improves the performance from 1.53× to
1.67× (9%), with the highest peak of 3.4× on the pca benchmark.
For pca, the key kernel (based on our simpoints) is computing the
correlation matrix, which contains a 3 level nested loop (i, j,k), and
the inner most loop accesses two matrix columns (a[k][i] ×a[k][j]).
The reuse distance is k for the first column and k × j for the second
one. To make things worse, the matrix is accessed in column order,
meaning that most data within the cache line goes unused. Without
cache awareness, we constantly miss in the L2 cache. Notice that
semi-binding stream prefetching here can not effectively hide this
latency as we are bound by the L1 cache MSHRs, while the stride
prefetcher in the L2 cache does not face this constraint. In stream-
aware cache, the L2 cache bypasses the second column, which
releases enough space to fully cache the first column. This increases

ld
a

lib
lin

ea
r

m
ot
io
n-
es
tim

at
io
n

pc
a

rb
m

sp
hi
nx sr
r

sv
d3

di
sp
ar
ity

lo
ca
liz
at
io
n

m
se
r

m
ul
ti_

nc
ut si
ft

st
itc

h
sv
m

te
xt
ur
e_
sy
nt
he
si
s

tr
ac
ki
ng

na
m
d_
r

pa
re
st
_r

po
vr
ay
_r

bl
en

de
r_
r

pe
rl
be
nc
h_

s
gc
c_
s

m
cf
_s

lb
m
_s

om
ne

tp
p_
s

xa
la
nc
bm

k_
s

x2
64
_s

de
ep
sj
en

g_
s

im
ag
ic
k_
s

le
el
a_
s

na
b_
s

xz
_s

ge
om

ea
n.

1.0
1.1
1.2
1.3
1.4
1.5 <-3.4x

Figure 15: Speedup with Cache Awareness
12

1.0 1.5 2.0 2.5 3.0
CortexSuite Speedup

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

En
er

gy

1.0 1.5 2.0 2.5 3.0
SPEC CPU 2017 Speedup

OOO[2,6,8]
Pf-Stride[2,6,8]

Pf-Helper[2,6,8]
SSP-Cache-Aware[2,6,8]

Figure 16: Relative Speedup and Energy Efficiency for Vari-
ous OOO Processors

the L2 cache hit rate and saves bandwidth on the bus to the L3 cache,
and leads to 3.4× speedup over semi-binding stream prefetching
and 4.1× over the baseline OOO core.

Another case is lbm_s, whose memory footprint is too large to
be cached in L3 and is memory bound. In such a case, the stream-
aware cache can forward requests to the L3 cache when all MSHRs
of the upper level cache are used. This effectively increases the total
number of parallel misses that can be handled by the cache system,
and improves the performance of lbm_s by 1.3×.
Design Space Interaction: To understand the tradeoffs and inter-
action with different OOO cores, we simulate several configura-
tions from dual-issue up to 8-issue. Figure 16 shows the relative
speedup and energy efficiency of the baseline OOO processor, stride
prefetching, ideal helper thread and SSP with stream-aware cache,
normalized to a dual-issue OOO core. Compared with traditional
prefetching, stream decoupling can greatly improve both the per-
formance and energy efficiency in both SPEC CPU 2017 and Cor-
texSuite. Notably a 6-issue SSP can surpass an 8-issue OOO in both
energy-efficiency and performance.

Compared to an ideal helper thread, SSP is much more effective
on CortexSuite. This is because most accesses are streams, which
can decoupled from the core, and also SSP can intelligently reason
about the cache behavior of streams. SSP only sees similar benefits
to the ideal helper thread on SPEC CPU, because its advantage of
decoupling is offset by its disadvantage in coverage against non-
streaming access.

10 CONCLUSION
This work explores the concept of leveraging the inherent structure
of streams to specialize the core pipeline, cache interface and cache
policies. We find that streams are common and follow simple pat-
terns. Furthermore, they can be decoupled, provided a semi-binding
interface that does not require stream data to be consumed. Our pro-
posed decoupled-stream ISA extensions leverage this principle to
enable the specification of repeated access patterns in the presence
of control flow and indirect memory, opening the door to effec-
tive execution-driven prefetching without redundant execution.

Our stream-specialized microarchitecture benefits from stream-
based prefetching, decoupling of address computation, and stream-
awareness in prefetch throttling and cache bypassing. Broadly, this
paradigm of encoding rich memory access semantics could open up
new opportunities for specialization of access and communication
at even higher levels within the cache and memory hierarchy.

11 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful suggestions
and feedback. This work was supported by NSF grants CCF-1751400
and CCF-1823562.

REFERENCES
[1] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B.

Taylor, “Sd-vbs: The san diego vision benchmark suite,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), pp. 55–64, Oct 2009.

[2] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia, and M. B.
Taylor, “Cortexsuite: A synthetic brain benchmark suite.,” in IISWC, pp. 76–79,
2014.

[3] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific pro-
cessing on a general-purpose core via transparent instruction set customization,”
in MICRO, 2004.

[4] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled execution of
recurring traces for energy-efficient general purpose processing,” inMICRO, 2011.

[5] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim, “Dyser: Unifying functionality and parallelism specialization for
energy-efficient computing,” IEEE Micro, vol. 32, pp. 38–51, Sept. 2012.

[6] Y. Park, J. J. K. Park, H. Park, and S. Mahlke, “Libra: Tailoring simd execution
using heterogeneous hardware and dynamic configurability,” in Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-45, (Washington, DC, USA), pp. 84–95, IEEE Computer Society, 2012.

[7] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the potential of
heterogeneous von neumann/dataflow execution models,” in Proceedings of the
42nd Annual International Symposium on Computer Architecture, ISCA ’15, (New
York, NY, USA), pp. 298–310, ACM, 2015.

[8] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman, “Needle:
Leveraging program analysis to analyze and extract accelerators from whole
programs,” pp. 565–576, Feb 2017.

[9] A. Sharifian, S. Kumar, A. Guha, and A. Shriraman, “Chainsaw: Von-neumann
accelerators to leverage fused instruction chains,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–14, Oct 2016.

[10] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14, Feb 2014.

[11] J. E. Smith, “Decoupled access/execute computer architectures,” in Proceedings of
the 9th Annual Symposium on Computer Architecture, ISCA ’82, (Los Alamitos,
CA, USA), pp. 112–119, IEEE Computer Society Press, 1982.

[12] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,
B. Towles, A. Chang, and S. Rixner, “Imagine: Media processing with streams,”
IEEE micro, vol. 21, no. 2, pp. 35–46, 2001.

[13] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and
A. Saidi, “The reconfigurable streaming vector processor (rsvp),” in Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
36, (Washington, DC, USA), pp. 141–, IEEE Computer Society, 2003.

[14] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The architecture
and design of a database processing unit,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, (New York, NY, USA), pp. 255–268, ACM, 2014.

[15] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, “Stream-dataflow
acceleration,” in Proceedings of the 44th Annual International Symposium on Com-
puter Architecture, ISCA ’17, (New York, NY, USA), pp. 416–429, ACM, 2017.

[16] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution accelerator for
loops,” in Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, (Washington, DC, USA), pp. 389–400, IEEE Computer
Society, 2008.

[17] G. Weisz and J. C. Hoe, “Coram++: Supporting data-structure-specific memory
interfaces for fpga computing,” in 25th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–8, Sept 2015.

[18] C.-H. Ho, S. J. Kim, and K. Sankaralingam, “Efficient execution of memory access
phases using dataflow specialization,” in Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, ISCA ’15, (New York, NY, USA),
pp. 118–130, ACM, 2015.

13

[19] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko, E. Ebrahimi,
N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A case for richer cross-layer abstrac-
tions: Bridging the semantic gap with expressive memory,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pp. 207–220,
IEEE, 2018.

[20] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and O. Mutlu, “The locality
descriptor: A holistic cross-layer abstraction to express data locality in gpus,”
ISCA, 2018.

[21] L. Kurian, P. T. Hulina, and L. D. Coraor, “Memory latency effects in decoupled
architectures with a single data memory module,” in [1992] Proceedings the 19th
Annual International Symposium on Computer Architecture, pp. 236–245, May
1992.

[22] L. K. John, V. Reddy, P. T. Hulina, and L. D. Coraor, “Program balance and its
impact on high performance risc architectures,” in High-Performance Computer
Architecture, 1995. Proceedings., First IEEE Symposium on, pp. 370–379, IEEE, 1995.

[23] N. C. Crago and S. J. Patel, “Outrider: Efficient memory latency tolerance with
decoupled strands,” in Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, (New York, NY, USA), pp. 117–128, ACM, 2011.

[24] T. J. Ham, J. L. Aragón, andM.Martonosi, “DeSC: Decoupled supply-compute com-
munication management for heterogeneous architectures,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 191–203,
Dec 2015.

[25] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation Cores: Reducing the Energy of
Mature Computations,” in ASPLOS ’10.

[26] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P.-C. Huang,
M. Arora, S. Nath, V. Bhatt, J. Babb, et al., “The greendroid mobile application
processor: An architecture for silicon’s dark future,” IEEE Micro, vol. 31, no. 2,
pp. 86–95, 2011.

[27] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W. Keck-
ler, C.W. Fletcher, and J. Emer, “Buffets: An efficient and composable storage idiom
for explicit decoupled data orchestration,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, (New York, NY, USA), pp. 137–151, ACM, 2019.

[28] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce data
access penalty,” in Proceedings of the 1991 ACM/IEEE conference on Supercomputing,
pp. 176–186, ACM, 1991.

[29] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory prefetcher,”
in Proceedings of the 48th International Symposium on Microarchitecture, pp. 178–
190, ACM, 2015.

[30] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spatial
memory streaming,” in ACM SIGARCH Computer Architecture News, vol. 34,
pp. 252–263, IEEE Computer Society, 2006.

[31] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi,
“Temporal streaming of shared memory,” SIGARCH Comput. Archit. News, vol. 33,
pp. 222–233, May 2005.

[32] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal mem-
ory streaming,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, ISCA ’09, (New York, NY, USA), pp. 69–80, ACM, 2009.

[33] A. Jain andC. Lin, “Linearizing irregularmemory accesses for improved correlated
prefetching,” in Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 247–259, ACM, 2013.

[34] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers,” ACM SIGARCH Computer
Architecture News, vol. 18, no. 2SI, pp. 364–373, 1990.

[35] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream buffers,” in Proceed-
ings of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 33, (New York, NY, USA), pp. 42–53, ACM, 2000.

[36] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.
Shen, “Speculative precomputation: Long-range prefetching of delinquent loads,”
in Computer Architecture, 2001. Proceedings. 28th Annual International Symposium
on, pp. 14–25, IEEE, 2001.

[37] A. Roth and G. S. Sohi, “Speculative data-driven multithreading,” in Proceedings
HPCA Seventh International Symposium on High-Performance Computer Architec-
ture, pp. 37–48, IEEE, 2001.

[38] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,” ACM
SIGARCH Computer Architecture News, vol. 29, no. 2, pp. 2–13, 2001.

[39] S. Kondguli and M. Huang, “Bootstrapping: Using smt hardware to improve
single-thread performance,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, (New York, NY, USA), pp. 687–700, ACM, 2019.

[40] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching by dependence
graph precomputation,” in Proceedings 28th Annual International Symposium on
Computer Architecture, pp. 52–61, June 2001.

[41] J. Lee, C. Jung, D. Lim, and Y. Solihin, “Prefetching with helper threads for loosely
coupled multiprocessor systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 9, pp. 1309–1324, 2009.

[42] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and adapting precomputa-
tion threads for effcient prefetching,” in High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pp. 85–95, IEEE, 2007.

[43] A. Garg and M. C. Huang, “A performance-correctness explicitly-decoupled
architecture,” in Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture, pp. 306–317, IEEE Computer Society, 2008.

[44] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,” in ACM
SIGARCH Computer Architecture News, vol. 19, pp. 40–52, ACM, 1991.

[45] N. Kohout, S. Choi, D. Kim, and D. Yeung, “Multi-chain prefetching: effective
exploitation of inter-chain memory parallelism for pointer-chasing codes,” in
Proceedings 2001 International Conference on Parallel Architectures and Compilation
Techniques, pp. 268–279, 2001.

[46] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung, “A general framework for
prefetch scheduling in linked data structures and its application to multi-chain
prefetching,” ACM Trans. Comput. Syst., vol. 22, pp. 214–280, May 2004.

[47] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and bypassing
algorithms,” IEEE Transactions on Computers, vol. 57, pp. 433–447, April 2008.

[48] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and insertion algorithms
for exclusive last-level caches,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, (New York, NY, USA), pp. 81–92,
ACM, 2011.

[49] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A. Jiménez, “Adaptive
gpu cache bypassing,” in Proceedings of the 8th Workshop on General Purpose
Processing Using GPUs, GPGPU-8, (New York, NY, USA), pp. 25–35, ACM, 2015.

[50] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman, “Introducing
hierarchy-awareness in replacement and bypass algorithms for last-level caches,”
in 2012 21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 293–304, Sep. 2012.

[51] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, ISCA ’07, (New York, NY, USA),
pp. 381–391, ACM, 2007.

[52] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new approach for
eliminating dead blocks and increasing cache efficiency,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pp. 222–233, Nov 2008.

[53] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated static and dynamic
cache bypassing for gpus,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pp. 76–88, Feb 2015.

[54] N. Vedula, A. Shriraman, S. Kumar, and W. N. Sumner, “Nachos: Software-driven
hardware-assisted memory disambiguation for accelerators,” in 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pp. 710–
723, IEEE, 2018.

[55] R. Huang, A. Garg, and M. Huang, “Software-hardware cooperative memory
disambiguation,” in High-Performance Computer Architecture, 2006. The Twelfth
International Symposium on, pp. 244–253, IEEE, 2006.

[56] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE Micro, vol. 16,
no. 2, pp. 28–40, 1996.

[57] I. Kim and M. H. Lipasti, “Understanding scheduling replay schemes,” in Software,
IEE Proceedings-, pp. 198–209, IEEE, 2004.

[58] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News,
2011.

[59] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space exploration of
customized architectures,” in Proceeding of the 41st Annual International Sympo-
sium on Computer Architecuture, ISCA ’14, (Piscataway, NJ, USA), pp. 97–108,
IEEE Press, 2014.

[60] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Y. Wei, and D. Brooks, “Co-designing accel-
erators and soc interfaces using gem5-aladdin,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–12, Oct 2016.

[61] T. Nowatzki and K. Sankaralingam, “Analyzing behavior specialized acceleration,”
in ACM SIGARCH Computer Architecture News, vol. 44, pp. 697–711, ACM, 2016.

[62] T. Nowatzki, V. Govindaraju, and K. Sankaralingam, “A graph-based program
representation for analyzing hardware specialization approaches,” IEEE Computer
Architecture Letters, vol. 14, pp. 94–98, July 2015.

[63] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“Mcpat: an integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in MICRO ’09.

[64] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to
find periodic behavior and simulation points in applications,” in Proceedings of
the International Conference on Parallel Architectures and Compilation Technique,
pp. 3–14, Sept. 2001.

14

	Abstract
	1 Introduction
	2 Overview
	3 Related Work
	4 Stream Characterization
	5 Decoupled-Stream ISA
	5.1 Decoupled-Stream Concepts
	5.2 Stream-ISA Extensions
	5.3 Pattern Limitations and Speculation
	5.4 Compiler Support

	6 Microarchitecture Extensions
	7 Stream-aware Policies
	7.1 Stream Prefetch Distance and Throttling
	7.2 Stream-Aware Cache Bypassing

	8 Methodology
	9 Evaluation
	10 Conclusion
	11 Acknowledgments
	References

