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ABSTRACT
Recent programmable accelerators are faster and more en-
ergy efficient than general purpose processors, but expose
complex hardware/software abstractions for compilers. A
key problem is instruction scheduling, which requires sophis-
ticated algorithms for mapping instructions to distributed
processing elements, routing of operand dependences, and
timing the arrival of operands to enable high throughput.
The complex dependences between mapping, communi-

cation and timing make prior scheduling techniques insuf-
ficient. Optimization-based approaches are too slow, and
heuristic-based approaches cannot achieve high quality. Our
first insight is that the algorithm can be solved in a series
of phases with overlapping responsibilities to reduce com-
plexity. Second, it is possible to combine optimization-based
and stochastic-heuristic based search strategies, to exploit
the best features of both. This leads to the two primary tech-
niques we explore, phase overlapping and hybridization.
In this work we explore the codesign of scheduling algo-

rithms with a challenging-to-schedule programmable accel-
erator. We show we can improve its area by 35% by trimming
its scheduling-friendly structures, using a scheduling algo-
rithm that is 5× faster than the state-of-the-art optimization-
based scheduler, with up to 2× better throughput.
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1 INTRODUCTION
With the slowing of exponential technology scaling, it has
become clear that processors with traditional instruction sets
are limited in terms of their energy efficiency and hence per-
formance scalability. To address this problem, programmable
accelerators add a rich interface between the software (com-
piler or programmer) and hardware layers, enabling more ef-
ficient and exposed microarchitectures while retaining some
level of programmability and generality [10, 11, 22, 29, 34, 42,
44, 46, 48, 55, 56]. Essentially, these accelerators have repur-
posed spatial architecture principles for the specialization
era, where such a rich interface is acceptable.

In an attempt to achieve ASIC-like energy efficiency, sev-
eral recent spatial architectures completely eschew control
capabilities from each processing element (PE) [12, 13, 15, 16,
20, 35, 36], hearkening back to classic systolic arrays [8, 50],
but with a more flexible network. We refer to such designs
as dedicated-PE accelerators.

The primary challenge in adopting these exposed and re-
strictive microarchitectures is that they require increasingly
demanding compiler support. One of the most recurring
and difficult problems in these designs is the problem of
instruction-scheduling: deciding when and where each com-
putation and operand communication should be performed.
More specifically, this includes the highly dependent prob-
lems ofmapping instructions to resources, routing dependent
values between instances of instructions, and the critical task
of assigning the timing of concurrent instructions to achieve
a high execution rate (hardware utilization). We identify
and demonstrate that the main challenge in attaining high
throughput is precisely matching arrival times of instruction
operands, avoiding delay-mismatch.
Though scheduling algorithms exist for dedicated-PE ac-

celerators, they inadequately address the above timing prob-
lem, imposing a stark hardware/software co-design tradeoff:
either sacrifice area/power efficiency by adding structures
to the hardware to ease the burden of scheduling, or have a
lean accelerator and suffer exorbitant scheduling times of a
rigorous schedule-space search.

Fast scheduling algorithms are typically based on a variety
of heuristics around minimizing communication distances
and resource consumption. They have extreme difficulty
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Figure 1: State-of-art scheduler effectiveness. Lower is
better in both axes.Max time: 20Minutes, Benchmark-
s/methodology in Section 6 (page 9)

constructing a schedule with matching arrival times on all
inputs, as their timing is dependent on the source instruc-
tions’ mapping and routing of operands. The more rigorous
approach is to solve the problem mathematically, commonly
as a mixed integer linear program (MILP) or using satisfiabil-
ity modulo theory (SMT) [38]. While this can lead to optimal
solutions, and require less complex hardware, they are far
too slow when applied to even modestly sized dedicated-PE
accelerators.

The fundamental codesign tradeoff can be seen in Figure 1,
which shows the scheduling results for the accelerator we
target in this work, stream-dataflow [35]. The x-axis is the
scheduling time in a log scale, and y-axis is the expected
throughput degradation (big circles are centroids, small cir-
cles are benchmarks). Existing simple heuristics fail due to a
small search space, and existing optimization techniques fail
due to too-large a search space. The sophisticated heuristic
scheduler we develop, in green, always succeeds. However,
it either must suffer performance loss (up to 2.5 ×) on the
lean and “hard” hardware configuration, or spend 1.5× area
to achieve good performance on the “easy” hardware config-
uration.
Goal and Insight: The goal of this work is to discover sched-
uling techniques which are both reasonably fast and find
high-performance solutions on lean hardware configurations.
To this end, we have two main insights. First, we observe
that it is neither necessary to solve the problem in a series
of independent phases for mapping, routing and timing, nor
to solve them all simultaneously. Rather, these different re-
sponsibilities can be solved in overlapped phases, which can
prevent poor greedy decisions early in the algorithm. For
example, an overlap-phased algorithm would perform the
mapping and routing together, in order to find a good map-
ping, but would not fix the routing before performing the
routing and timing together. Our second insight is that it is
possible to combine heuristic-based and optimization-based

methods into a hybrid scheduling algorithm, by applying
them on the phases they are best suited for.
In this work, we explore a design space of instruction

scheduling algorithms for an extremely-lean dedicated-PE
array from the stream-dataflow [35] accelerator, a represen-
tative programmable accelerator. We then explore how these
algorithms can tradeoff scheduling time, solution quality
(performance) and hardware overhead.
Specifically, our contributions are:

• Identification of delay mismatch as the bottleneck in
dedicated-PE scheduling; mitigation with delay-FIFOs.
• Developing the principles of phase-overlapping
(overlapped execution of scheduling responsibilities) and
hybrid-scheduling (integration of heuristic phases),
which can be applied to spatial scheduling in general.
• Evaluation on a representative dedicated-PE accelerator,
demonstrating phase-overlapping/hybrid-scheduling ef-
fectiveness on extremely restrictive hardware.

As a minor contribution, we construct a sophisticated
heuristic scheduler based on stochastic search for use in
hybrid scheduling, and augment a prior MILP scheduling
formulation with advanced delay-matching techniques.
Findings: First, solving any phase independently, even with
sophisticated optimization based search, conclusively fails on
a dedicated-PE accelerator. Second, this work demonstrates
the importance of compiler/architecture codesign – we show
we can improve the area-efficiency of a high performance
accelerator by 35% by trimming its scheduling-friendly struc-
tures, using a scheduling algorithm that is 5× faster than the
state-of-the-art optimization-based scheduler, with up to 2×
better throughput.
Paper Organization:We first discuss challenges and con-
straints for dedicated-PE accelerator scheduling (§2), then
overview the explored and developed scheduling techniques
(§3). In the following section, we discuss techniques to en-
able phase overlapping for an optimization-based scheduler
(§4). This motivates the discussion of our heuristic scheduler
and its integration with optimization phases (§5). Finally, we
then discuss the evaluation methodology (§6), results (§7),
related work (§8), and conclude (§9).

2 SCHEDULING CHALLENGES
In this section, we elucidate the challenges of scheduling
for dedicated-PE accelerators. First, we describe the essen-
tials of spatial scheduling, then elaborate on our scheduling
setting through contrasting with traditional CGRAs, and
finally describe the fundamental challenges and potential
techniques.
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Figure 2: Example Scheduling Problem
2.1 Spatial Scheduling Essentials
We define a spatial architecture as one which exposes the
management of hardware resources for execution, routing,
storage, and/or timing of operations to the software. Spa-
tial scheduling is the task of deciding an execution plan for
a dataflow graph of computations of interest to this rich
software interface. Figure 2 shows an example of mapping
a graph of instructions onto a hardware graph, for an ab-
stract dedicated-PE architecture. In the accelerator context,
dataflow graphs correspond to the computations from a loop
or loop nest. There are three main scheduling responsibilities,
which are highly interdependent:
• Mapping Assign computation elements (instructions, in-
puts, outputs) to compatible resources.
• Routing Assign dependences between computation ele-
ments (their communication) to network resources.
• Timing Coordinate the timing of computation and com-
munication to maximize the potential throughput.
Depending on the particular architecture and its capabil-

ities, the above scheduling problem can tend to be either
trivially easy, or very difficult. Typically, hardware which is
optimized for area or power has fewer structures to ease the
burden of scheduling.

2.2 Dedicated versus Shared PEs
CGRA Styles: Programmable accelerators often embed
a coarse grain reconfigurable architecture (CGRA), a
networked collection of processing elements (PEs) that can
be reconfigured for different computations. One defining
feature of the PE is in how instructions are mapped to it –
either the PE can be shared by multiple instructions and
time-multiplexed (eg. [10, 22, 30, 42–44, 56]), or it can be
dedicated to one static instruction (eg. [12, 13, 16, 20, 35, 36]).
In terms of their execution model, both CGRA types attempt
to pipeline multiple iterations of the computation graph, but
a dedicated PE CGRA necessarily attempts to fully-pipeline
the computation.
PE Examples: Figure 3 shows a prototypical example of a
shared PE and dedicated PE. These PEs have a very simi-
lar structure in terms of routing values from neighboring
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Figure 3: Traditional Versus Dedicated PEs

switches (routers) in the network into a functional unit, and
maintaining state for both instruction configuration and local
reuse. However, since a shared-PE maps multiple instruc-
tions, it must contain a configuration or instruction buffer to
remember which instructions to time-multiplex, and at what
point in the execution. To allow communication between
instructions residing on the same PE, a register file is added.
On the other hand, a dedicated-PE array only maps a single
instruction, and pipelines multiple instances of that instruc-
tion over time, with perhaps a single register for reduction.
The “delay FIFO” is a critical hardware resource which eases
the scheduling burden, which we explain next in Section 2.3.

Broadly, the advantage of the shared-PE array is the flex-
ibility in mapping large computation graphs, at a cost of
requiring some extra hardware support. Extra support is
required in the compiler for a dedicated-PE array to resize
the computation graph to the hardware, typically through
vectorization [20]. Note that we assume the compiler/pro-
grammer has already resized the graph to meet the resource
constraints of the CGRA. A combined vectorizer/scheduler
is beyond the scope of this work.

2.3 Scheduling Dedicated-PE CGRAs
Scheduler Goal: As for most accelerator architectures, the
goal of the instruction scheduler is to achieve the maximum
throughput for a given input computation graph. In a tradi-
tional shared-PE CGRA, this is accomplished by minimizing
the “initiation interval” II – the number of cycles between
iterations of the loop. A secondary objective would be to re-
duce the total latency of the schedule, to reduce the penalty
of filling/draining the pipeline.
For a dedicated-PE CGRA, an II=1 schedule is intuitively

guaranteed just by having fully-pipelined functional units1,
and implies 100% utilization of any mapped PEs. However,
when taking into account the timing and limited buffering,
this is not quite the case.
Affect of Delay-Mismatch: If the relative delay of two in-
puts arriving at a PE do not match, the throughput achievable

1We ignore recurrences besides accumulation for this discussion, these are
handled in the architecture-specific Section 6.1.
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Figure 4: Dedicated PE CGRA Timing Challenge

is reduced. Figure 4 explains this effect. Figure 4(a) shows
a generic dedicated PE CGRA and the extracted datapath,
highlighting the source and destination PE, as well as the
buffer stages between them (5 on the long path, 2 on the
short path). Note that the destination PE has two slots in
its delay FIFO, so even though there is an overall delay mis-
match of 3, the delay FIFO can lengthen the short path, and
get a mismatch of 1. In Figure 4(b) and (c), we show the datap-
ath operation by examining consecutive outputs (a,b,c,d,e,...)
from the source node. In Figure 4(b) we show that if we
assume II=1, there will be insufficient buffering on cycle 4,
because the corresponding inputs on the long path will not
yet have arrived.
A simple solution sets II to (1 + delay mismatch), which

guarantees a mismatch number of bubbles behind a value
while it is waiting for its corresponding input down the long
path. However, we can do better if we have buffering at the PE
inputs, specifically the delay-FIFOs mentioned earlier. These
not only reduce the mismatch, they can also hold multiple
inputs while waiting for the long path. This can be seen in
Figure 4(c), which shows the correct pipeline operation using
a fractional II of 3/2 (one bubble every 3 cycles). In general,
the best II is:

II = max
PE∈PEs

FIFO_LEN +mismatchPE
FIFO_LEN

(1)
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Figure 5: Three delay-matching techniques

2.4 Delay Matching Techniques
Mismatched delays, which reduce maximum throughput,
occur either because an instruction’s producers may have
beenmapped at different relative distances (mapping/routing
issue), or because the computation graph contains commu-
nication between instructions at different depths. Figure 5
shows several legal example schedules for a computation
graph. The number underneath each instruction indicates
which cycle that instruction will be performed at. This delay
estimation assumes one cycle per instruction and network
hop.

This figure demonstrates three different strategies for en-
abling delay matching. Each of these has the same compu-
tation vertex to hardware node mapping, and most of the
routing is similar as well. The only difference is in how the
m3→a2 edge is delayed, which needs three additional cycles
of delay. Technique 1 is to use a longer route between the
mapped location ofm3 and a2; this consumes extra routes.
Technique 2 uses a PE as a no-op, which we refer to as pass-
through. While this consumes less routing resources than the
previous schedule, it takes an extra PE resource. Schedule 3
balances timing by using the delay-FIFO to add delay on a2’s
input.
In general, all three techniques are required to balance

delay, and are useful in different situations as they comple-
ment each other. This is partly because the delay-FIFOs are
expensive in hardware, making it is desirable to keep these
as small as possible. Other techniques can help compensate.
It is also possible to combine the techniques, ie. to use two
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passthrough nodes, adding configurable delay to each one,
and also using an extra long route. Passthrough is also useful
purely for increasing routing bandwidth, provided there are
extra PEs available.
CGRA Scheduling Objective: Overall, because through-
put is critical, we place a higher priority on minimizing the
maximum mismatch, and a lower priority on minimizing
latency. Minimizing latency is marginally helpful for reduc-
ing setup and drain time, which is mostly an effect for short
phases. Also, reducing latency helps lessen the impact of
recurrences (a reuse of a value on a subsequent iteration),
which also limit the II. In practice, though, we find that re-
duction recurrences are not common, and can often be taken
off the critical path through loop transformations.
Codesign Implications: A major factor in area overhead
comes from the delay FIFOs. Later evaluation will show up
to 50% overhead for a relevant accelerator. As we will see in
the analysis in subsequent sections, the FIFO-length plays
the primary role in the difficulty of the problem, motivating
the need to mitigate with advanced scheduling techniques.

3 SCHED. TECHNIQUES OVERVIEW
We apply two main techniques in this work, phase over-
lapping (performing scheduling through phases with over-
lapping responsibilities) and hybrid scheduling (integrating
heuristic phases with optimization phases). Here we provide
a conceptual framework to reason about their integration;
a visual depiction with algorithm abbreviations is shown in
Figure 6.
Technique 1: Phase Overlapping: The most powerful and
slow scheduler jointly solves the mapping, routing and tim-
ing problems (termed MRT in Figure 6). A natural way to
reduce the complexity would be to break the problem into
phases, either performing them all independently (M.R.T),
mapping and routing together (MR.T), or routing and timing
together (M.RT).
While faster, the tight dependence between scheduling

responsibilities makes this approach less effective. A change
in the mapping from computation vertex to resource node
may make routing easier because an open path exists, but

might come at the expense of making the timing constraint
more difficult to solve. A change in the routingmight open up
a new space for routing other edges, but may prevent certain
mappings from even being possible. Therefore, fixing one
phase before moving onto the next may prove irrecoverable.
We propose here to break the scheduling problem into

overlapping phases. An initial phase may address some re-
sponsibilities, commit to a subset of the decisions, and the
next phase would addresses an overlapping set of respon-
sibilities. In this context, the phase-overlapped scheduler
performs joint mapping and routing, then fixes the mapping
decisions, then performs joint routing and timing (MR.RT).
This scheduler is decidedly faster, because the search space
is vastly reduced.
Technique 2: Hybrid Scheduling: As the results will
show, employing phase-overlapping to the optimization-
based scheduler is much faster, but not sufficiently fast
enough to be practical (we are aiming for a few minutes
at most). The main question becomes how to improve
the scheduling time without sacrificing the ability to find
solutions or the solution quality. The principle here is to
replace part of the branch-and-bound based search that an
optimization solver would apply, with a heuristic-based
search which can more quickly find legal solutions. For
example, the mapping and routing phase of MR.RT can be
substituted with a heuristic. We refer to this as a hybrid
scheduler. Notationally, we denote the heuristic as the H
phase, and the overall hybrid scheduler as H.RT. Note this is
distinct from inputting an initial solution to an ILP solver
as a way of attaining an upper bound for a minimization
problem.
Finally, the goal of this phase is to select a solution for

the subsequent phase which would maximize its chances of
success. For example, a heuristic for the MR phase should
find a mapping and routing which maximizes the chances of
the RT phase to find a legal schedule.
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# Constraints Description

M
ap

pi
ng 1,2 ∀v ∈V

∑
n∈Cvn Mvn = 1, ∀v ∈V

∑
n<Cvn Mvn = 0 All vertices mapped to exactly one compatible node.

3
∀v1v2∈G∩n1,n2∈N Dv1v2 ≥ DISTn1n2 (Mv1n1 +Mv2n2 − 1)

Calculation of distance, D, between each node. DIST is a pre-
computed parameter describing hardware node distance.

R
ou

ti
ng

4
5

∀ve ∈G,n∈N Σnl ∈HMel = Mvn + Pen
∀ev ∈G,n∈N Σln∈HMel = Mvn + Pen

Each input (output) edge must be mapped to an input (output) link
on the assigned node, or the node is a passthrough.

6
7 ∀e ∈E,r ∈R Σlr |H ,Mel = Σr l ∈HMel ∀e ∈E,r ∈R Σr l |H ,Mel ≤ 1 Mapped links entering router should equal those leaving router,

and should only enter the router once.

8
9 ∀ve ∈G,l ∈L Mel ≤ Mvl ∀v ∈V ,l ∈L Σve ∈GMel ≥ Mvl

An edge mapped to link implies vertex mapped to link, and a vertex
mapped to link implies some edge mapped to link.

10 ∀l ∈L Σv ∈GMvl ≤ 1 Only allow one vertex to be mapped per link.

11
12

∀e ∈E,ve ∈G Te = Tv + LATv + (Σl ∈LMel ) + Xe
∀e ∈E,ev ∈G Tv >= Te

Timing Equations: Vertex latency greater than dependent vertex,
plus instruction latency, plus number of links

T
im

in
g 13 ∀e ∈E Xe ≤ FIFO_LEN(1 + Σn∈N Pen ) Constrain the maximum FIFO delay, X (e ).

14 ∀e ∈E,ev ∈G mismatch >= Tv −Te Compute mismatch at each vertex.

15 ∀l1l2∈H,e ∈E Ol1 +MLAT(Mel1 +Mel2 − 1) ≤ Ol2 No fictitious cycles: connected links have increasing orderOl .

Table 1: MILP Scheduling Formulation of each Phase (objectives not shown)

4 OPTIMIZATION FORMULATION AND
PHASE OVERLAPPING

The objective of this section is twofold. The first is to describe
the formulation of the scheduling problem as an MILP, par-
ticularly how it extends previous descriptions for advanced
delay matching. The second objective is to show how it can
be broken into either independent or overlapped phases.

4.1 MILP Formulation
The MILP formulation we employ is based on a general
formulation for spatial architectures [37], which we briefly
recap below. We then discuss modifications for advanced
delay matching using passthrough routing and delay-FIFOs,
and modifications to enable phase overlapping.
Optimization Problem Notation: Adopting the nomen-
clature of [37], we express the computation graph as a set of
verticesV , and edges E, and the connectivity as an adjacency
matrixGV∪E,V∪E . For example, ve ∈ G represents a vertex v
and its outgoing edge e , and v1v2 ∈ G represents two con-
nected vertices. Note that lowercase letters generally are
members of the uppercase letter’s set. The hardware graph
is composed of nodes N , routers R and directed links L to
connect them. This is represented by a setHN∪R∪L,N∪R∪L . Fi-
nally, only certain vertices are compatible with certain nodes,
indicated by set CV N . Figure 7 demonstrates the notation.
As mentioned, the scheduling algorithm’s job is to map

input, computation, and output vertices to input port, compu-
tation, and output port nodes, respectively. The restrictions
on hardware lead to the following scheduling constraints
(complete model in Table 1):

× × × 
+
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Figure 7: Notation used for MILP Formulation

• Mapping: Because we target a dedicated-PE array, all
vertices must be mapped to a unique and compatible node.
The binary decision variables here indicate vertex to node
mapping,MV N .
• Routing: For any edge, there must exist a connected
path of links, through routers, between the source and
destination vertex. Only one value may be mapped per
link. The binary decision variables here indicate mapping
of edges to linksMEL .
• TimingWhere latency is defined as the cycle-offset from
the initial arrival of data, the maximum latency mismatch
(difference) of operands on each node should be mini-
mized as the primary objective. Minimizing latency is
secondary. The decision variables here indicate execution
time of the vertex and edgeTV andTE , and the FIFO delay
XE .

Support for Delay Matching: The MILP formulation sup-
ports all three forms of delay matching:

(1) Long Paths: Automatically through MILP search.
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(2) Passthrough: We add a set of binary variables Pe,n indi-
cating if an edge e is being mapped as a passthrough for
a node n. Routing equations (4,5 in table 1) are updated to
allow edges to be mapped as the inputs to nodes, either if
the corresponding vertex is mapped to the node, or if the
edge and node pair is a passthrough.

(3) Delay FIFOs: Integer variables XE indicate extra delay
due to delay FIFOs on each edge. Constraint 14 limits XE
to the FIFO_LEN, multiplied by the number of PEs on that
path (1 + number of passthroughs).

4.2 Phases and Overlapping
Each set of responsibilities (mapping, routing, timing) may
be solved solved jointly, in independent phases, or with over-
lapped phases. If scheduling independent (non-overlapped)
phases, all variables’ values are carried into the next phase.
For overlapped phases, only a subset of variable values are
carried into the subsequent phase. As an example, while a
non-overlapped MR.T algorithm performs mapping and rout-
ing, then fixes the associated variables (MV N for mapping
andMEL for routing), the phase-overlappedMR.RT fixes only
the mapping (MV N ) after the first phase.
Objective Functions: To support all types of phases in Fig-
ure 6, we require several objective functions, as each phase
has different available information:

• MRT, RT, T In these phases we minimize the maximum
mismatch (modeling expected throughput), plus a small
factor for the maximum latency of any path (eg. mismatch
+ latency / 100), as we optimize latency only as a secondary
objective. Because mismatch is the most important ob-
jective, we allow this phase to terminate early when a
zero-mismatch schedule is found.
• MR, R Since mismatch is not available, in these phases
we minimize the maximum latency alone. Because per-
formance is generally not latency sensitive, we reduce
scheduling time by allowing these phases to terminate
early if they reach within 10% of an optimal schedule.
• M Here, even latency is not available, as there is no rout-
ing. Instead we simply minimize total distance between
dependent vertices on the grid, intuitively minimizing
the “distortion” of the input graph when mapped to the
hardware topology. In an offline phase, we calculate the
distance between all pairs of nodes (ie. distance with-
out considering routing contention) with an additional
variable DVV (see constraint 3). We use a similar 10%
threshold to optimum as the early stopping criterion.

Phase Time Allocation: There is a final issue of allocating
time to each scheduling phase, given some maximum desired
overall time; the early phases should be limited to leave some
time to complete the later phases. Empirically we found that

this was only an issue for the MR phase, as it is the most
expensive in terms of scheduling time, so we allow the MR
phase to have 90% of the overall time.

5 HYBRID STOCHASTIC SCHEDULING
The second principle that this work explores is hybrid sched-
uling, where some scheduling phases are performed by a
fast heuristic scheduler to reduce the search space, and other
phases are performed through optimization to find a guar-
anteed best solution. Here we explain the design of a so-
phisticated heuristic scheduler, and how to integrate with
optimization-based scheduling phases, particularly for over-
lapped responsibilities.
We remark that our goal here is to create an effective

heuristic scheduler that performs all three forms of delay-
matching, which can be used for effective hybrid scheduling.
It is beyond the scope of this work to compare various heuris-
tic scheduling techniques.

5.1 Iterative Stochastic Scheduler
Heuristic Scheduler Considerations: In designing a
heuristic scheduling algorithm for use in hybrid and
overlapped scheduling, both solution quality and time-to-
first-solution are critical. Solution quality is of course useful
because it increases the likelihood of the optimization phase
being successful. Reducing the time to first-solution is also
useful, because if it is low enough, it enables an iterative
approach where the optimization phase can be applied
multiple times with different partial solutions from the
heuristic.
High-level Heuristic Scheduling Approach: To balance
the objectives of time-to-first-solution and solution quality,
our approach is to use an iterative stochastic search, where
all three scheduling responsibilities (mapping, routing, tim-
ing) are considered simultaneously. Essentially, we attempt
to schedule the software graph onto the hardware graph mul-
tiple times, where in each iteration the scheduling decisions
are most-often locally optimal. This approach of relying on
mostly locally-optimal decisions leads to nearly-satisfactory,
reasonable solutions quickly. The best solution at any point
can be used in later scheduling phases.

Stochasticity comes into play to improve solution quality,
where each iteration introduces some randomness in the or-
dering of scheduling decisions, as well as sometimes making
locally-non-optimal choices. As better solutions are found,
ie. those which have a lower delay-mismatch, scheduling
iterations which are determined to have a larger mismatch
can be exited early; this essentially bounds and speeds up
the search during later iterations.
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Algorithm 1: ScheduleIteration(G,H)
input :Computation Graph G, Hardware Graph H
output :Schedule S

1 list = RandomTopologicalSort(G)
2 for v ∈ list do
3 best_routing = Nill
4 if do_rand_pick() then
5 while (!success && attempt_more()) do
6 n = randompick(CompatibleNodesLeft(v ,S))
7 success = RouteInEdges(v ,n,cur_routing)
8 end
9 if success then best_routing = cur_routing

10 else
11 for n ∈ CompatibleNodesLeft(v ,S) do
12 cur_routing = Nill
13 success = RouteInEdges(v ,n, cur_routing)
14 if success then best_routing = cur_routing
15 end
16 end
17 if best_routing == Nill then return Nill
18 else if mismatch(best_routing) > mismatch(best_schedule)

then return Nill
19 else IncorperateRouting(S ,best_routing)
20 end
21 Procedure RouteInEdges(v , n, cur_routing)

input :Vertex v , Node n, Routing cur_routing
output :Update cur_routing

22 success = true
23 for e ∈ IncommingEdges(v) do
24 success &&= ShortestPath(e ,n,cur_routing,H)
25 && r_score(cur_routing) < r_score(best_routing)
26 if !success then break
27 end
28 return success

AlgorithmCore: At the heart of the algorithm is a list-style
scheduler: ScheduleIteration (see Algorithm 1). We first ex-
plain its operation without discussing the stochastic aspects
(stochastic elements are highlighted in blue). Note that this
algorithm is similar to what is described for previous dedi-
cated PE architectures [20, 21], but is updated to perform all
three forms of delay-matching.

At the top level, the algorithm iterates over the computa-
tion graph in forward topological order. For each instruction
vertex, it attempts to route its input dependences on each
compatible hardware node (loop on line 11), with procedure
RouteInEdges(). This procedure calls a shortest path algo-
rithm on each incoming edge. Forward topological order is
chosen because it enables the delaymismatch to be computed
at each step. This allows the algorithm to choose the node
n with the minimal mismatch. Hardware nodes which have
equivalent mismatch are prioritized first by (minimizing) the

Algorithm 2: HeuristicSchedule(G,H)
input :Computation Graph G, Hardware Graph H
output :Schedule S

1 best_schedule=Nill, i=0
2 while keep_going(++i,best_schedule) do
3 new_schedule = ScheduleIteration(G, H )
4 if score(new_schedule) < score(best_schedule) then
5 best_schedule = new_schedule
6 end
7 end

new value of the maximum delay mismatch, and second by
the number of routing resources it would consume to map to
them (function r_score on line 25). Once chosen, n’s routing
will be incorporated into the final schedule for this iteration.
Adding Stochasticity: There are two main sources of
Stochasticity which we found to be useful in scheduling
(highlighted in Algorithm 1). The first is to iterate in a
random topological order (line 1), to enable the different
instruction dependence paths to be prioritized on different
iterations. The second source of stochasticity is to sometimes
choose an arbitrary compatible node to schedule to, rather
than one that minimizes resource use (lines 4-9). The
function do_rand_pick() decides how often to perform the
stochastic versus the locally-optimal mapping. Based on
empirical measurements, we set this parameter to be around
10% of mapping decisions being stochastic. We then simply
call ScheduleIteration multiple times, keeping the best
current schedule (Algorithm 2).
Because the stochastic algorithm is iterative, the lowest

mismatch is used to bound further search. Here, the Sched-
uleIteration function can be terminated early if it becomes
impossible to schedule a node with higher mismatch (line 18).
Function mismatch() computes the lowest possible mismatch
given the mapping/routing decisions and delay-FIFO length
(using max/min arrival times).
Support for Delay Matching: Overall, the stochastic
scheduler supports all three forms of delay matching:

(1) Long Paths: The random selection of a seemingly arbi-
trary node can sometimes provide the extra latency for a
path that needs to be lengthened.

(2) Passthrough: The shortest path routing algorithm al-
lows routes through functional units. To prevent exces-
sive use of node resources as passthroughs, the cost is
inversely proportional to the number of not-needed nodes
left.

(3) Delay FIFOs: At each step of the algorithm, the max/min
arrival times are maintained for computing maximum
mismatch, which are used to prioritize mapping decisions
throughout each iteration.
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Algorithm 3: ScheduleHybrid(G,H)
input :Computation Graph G, Hardware Graph H
output :Schedule best_schedule

1 while time_left() && mismatch(best_schedule) != 0 do
2 heur_sched=HeuristicSchedule(G,H)
3 new_sched=SchedMILP(G,H,

init_guess=heur_sched,Mvn=heur_sched.Mvn)
4 if score(new_sched) < score(best_schedule) then
5 best_schedule = new_sched
6 end
7 end

5.2 Hybrid Scheduler Integration
Because our later experiments indicate that the MR phase of
the hybrid (MR.RT) scheduler dominates scheduling time, we
discuss here how to replace the MR phase with the heuristic
phase to create a hybrid scheduler (H.RT).

Our strategy is simply to call the stochastic scheduler for
a modest number of iterations, then use this solution both as
an initial guess (which aids the traditional branch-and-bound
search of MILP solvers by providing a lower bound) and also
as the fixed mapping MV N to implement the overlapped
scheduling. This process repeats until the algorithm finds
a legal schedule where mismatch is zero (see Algorithm 3).
We also found that we do not require much time in the RT
phase to find a good solution, but sometimes the optimizer
“wastes time” by trying to prove optimality. Therefore, we
set a timeout of 5 minutes in the RT phase, which allows
the algorithm to attempt more initial solutions from the
heuristic.
Finally, to improve the likelihood of the optimization

scheduler’s success, our heuristic’s objective ("score") adds a
second-order term for the total mismatch across nodes (ie. it
optimizes for total mismatch as a secondary objective). This
intuitively reduces the total amount of correction required
by the optimization scheduler.

6 EVALUATION APPROACH
6.1 Target Architecture
Architecture Overview: For context, we briefly describe
the target architecture for performance analysis. The stream-
dataflow accelerator [35] (Figure 8) consists of a control
core, dedicated-PE CGRA, and stream-engines to coordinate
data movement (for scratchpad, memory, recurrence). Data
is accessed from memory (cache hierarchy) or scratchpads
in decoupled streams from the computation; this combined
with wide cache/scratchpad ports and wide buses enable
feeding the CGRA fast enough to sustain fully-pipelined
execution (provided the scheduling algorithm can achieve a
high-quality schedule).

Input Vector 
Ports

Output
Vector Ports

I1 I2 I3

O1 O2

Memory
Engine

Scratch
Engine

Simple
Core

CGRA
Coarse Grain 

Reconfigurable 
Array Re
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rr
en
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En
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ne

Commands
(to engines)

to 
memory

Figure 8: Stream-Dataflow Accelerator

Data flows through the CGRA deterministically with static
delays through all paths, foregoing any flow-control inter-
nally. Data is fired synchronously into the CGRA when
enough is available for one instance of the computation.
CGRA firing logic maintains a running tally of whether the
last (FIFO_LEN + mismatch) cycles had less than (FIFO_LEN)
occurrences, in order to determine if firing a computation
instance is legal.
Provisioning: The CGRA has a 64-bit datapath and circuit
switched configurable routers. The PE grid size is 5x5, PEs are
heterogeneous and support fixed-point and subword SIMD,
and (besides for special-function units) are fully pipelined to
enable up to II=1 on all computations.

6.2 Evaluation Methodology
Optimization and Simulation Software: Optimization-
based formulations use GAMS [1] version 24.7.3 with IBM
CPLEX solver, version 12.6.0.0 [2]. For estimating perfor-
mance, we use a gem5 [7] based cycle-level simulator of
stream-dataflow.
Benchmark Computation Graphs: The computation
graphs in this study are from the previous evaluation of the
stream-dataflow accelerator [35]. These include workloads
from MachSuite [49], representing codes for which ASICs
are typically built, and deep neural network layers, based on
the implementation in DianNao [9]. We also implement a
set of linear algebra kernels.
Area Estimation: For the area estimation impact of the
delay-FIFOs, we use the baseline accelerator numbers from
the stream-dataflow paper [35], and synthesize FIFOs written
in Chisel [6] (for consistency with the original work) of
different sizes, using a 55nm tech library.
Maximum Scheduling Time: The maximum scheduling
time per computation graph that we use for the majority of
the results is 20 minutes, and later results show sensitivity
to increased scheduling time. Speaking broadly, this is rea-
sonable, considering that accelerated workloads are fewer
and generally do not need to be recompiled as often. Also,
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FIFO_LEN Sched. Difficulty Area (mm2) Overhead

2 Very Hard 0.528 9.67%
3 Hard 0.543 12.90%
7 Medium 0.606 25.85%
15 Easy 0.736 52.86%

Table 2: Area and Problem Difficulty

as mentioned earlier, all schedulers may terminate early if
the maximum mismatch becomes zero (or if an alternate
objective is fulfilled, as in Section 4.2).

7 EVALUATION
The broad objective of the evaluation is to determine the
efficacy of phase-overlapping and hybrid scheduling. We
formulate this as the following questions:
Q1. Does delay-FIFO size impact accelerator area?
Q2. Time/performance tradeoffs with overlapping?
Q3. Does the initial guess improve scheduling time?
Q4. Intuitively, why does the hybrid approach work?
Q5. Which algorithm is best for a given FIFO_LEN?
Q6. How do the results change with scheduling time?
Q7. Are results similar across benchmarks?
Q8. Does delay-mismatch correlate with performance?

Q1. Does delay-FIFO size impact accelerator area?: The
area breakdown of the accelerator with different FIFO sizes
is in Table 2. The configuration with FIFO_LEN of 15 has about
50% area overhead over the design with no delay FIFOs, which
is a significant portion.

Q2. What are the scheduling time and performance
tradeoffs with phase overlapping?:

Figure 9 shows the expected throughput (inverse of initia-
tion interval) and scheduling time of all optimization-only
schedulers, including non-overlapped (M.RT, MR.T, M.R.T),
overlapped (MR.RT), and joint (MRT), for the “easy” problem
with FIFO_LEN=3. While the MR.RT algorithm performs
the best (solving 17/20 inputs), and M.RT performs second
best (solving 16/20 inputs), no algorithms succeed across all
workloads. This means that optimization alone is insufficient
to find good schedules quickly.

Different phases fail for different reasons. The M.R.T and
MR.T schedulers fail because the timing phase is difficult to
solve independently of the others. The M.RT fails for the
same reason, except here it is difficult to perform routing
independently of mapping. The joint (MRT) and overlapped
(MR.RT) have the ability to consider mapping decisions based
on routing constraints, and to consider routing decisions
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Figure 9: Optimization-only schedulers’ throughput
and scheduling time (FIFO_LEN=3)

based on timing constraints, but they sometimes fail any-
ways because the combined mapping and routing is expen-
sive within the solver, and if no solution is found here the
algorithm cannot continue.
On the positive side, not only does MR.RT succeed most

often, it is also much faster (2× over MRT and 3× over M.R.T
on average). This may be surprising, given that the MR.RT
scheduler uses more complex phases which have more con-
straints than solving each phase individually. However, the
reduced scheduling time can be explained by the fact that
the schedulers are allowed to terminate early if they find an
acceptably-optimal solution. Note that sometimes a sched-
uler will run out of time if it could not find the optimal solu-
tion, because it is performing a time-consuming search over
the possible decisions to prove infeasibility; in such a case it
can still return the best known solution at the conclusion of
the algorithm.
We also looked at increasing the scheduling time to an

hour (data not shown here). The MR.RT scheduler found
valid schedules across all workloads, while the M.RT sched-
uler did not solve any additional inputs. Overall, making
mapping decisions before considering routing is intractable, as
is making routing decisions before timing – overlapped sched-
uling is necessary.

Q3. Does the initial guess help optimization tech-
niques?: The traditional way of using a heuristic to
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Figure 10: Effect of initial guess (*) on MR.RT.
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Figure 11: Solution quality achieved over 10 minutes
(32-1 Reduction Kernel).

augment an optimization-based scheduler is to use it
to generate an initial guess to bound the search space.
Figure 10 shows the solution times for each benchmark
for MR.RT, for FIFO_LEN=3 and 20 minute scheduling
time bound, with and without the initial guess from the
heuristic solver (*MR.RT uses an initial guess based on
our heuristic scheduler). Sometimes the solution time is
slightly worse, because of the additional time to compute
the heuristic. However, in several cases the solution time
is cut dramatically. Overall, the scheduling time is only
slightly better on average, by 25%.
For this reason, we will always assume that the initial

guess is employed for all algorithms tested going forwards
in the evaluation. That said, as the difference is overall very
small, using the heuristic to generate an initial guess is insuffi-
cient alone to reduce scheduling time.

Q4. Intuitively, why does the hybrid approach reduce
scheduling time?: Figure 11 shows the objective function
of three schedulers (stochastic heuristic, overlapped, and
hybrid) over time. For the stochastic scheduler, it initially
quickly finds many solutions of increasing quality. How-
ever, it quickly tapers-off and cannot further improve. The
overlapped-phase scheduler (MR.RT) has two phases. During
the MR phase, no solution is found for two minutes. How-
ever, once one is found, the RT phase is entered, and within 3
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Figure 12: Overall Scheduler Effectiveness. (FIFO_LEN
decreases from left to right bar; initial guess from H
is enabled.)

seconds the zero-mismatch solution is found. Achieving the
best of both worlds, the hybrid scheduler (H.RT) first utilizes
the heuristic scheduler to quickly attain an initial schedule
that has a reasonable set of mapping decisions, then uses these
to bound the solution space for the RT phase, quickly getting
a zero-mismatch solution in the optimization phase. Overall,
this takes only around 30 seconds.
Q5. Which algorithm is best for a given FIFO_LEN?:
Figure 12 shows the overall effectiveness of the approaches
in this work across all workloads, in terms of the throughput
(left) as well as the average scheduling time (right).

The hybrid scheduler (H.RT) performs the best in terms
of both throughput and scheduling time on average across
all hardware configurations. While the heuristic scheduler
(H) performs reasonably well on the easier configurations
(FIFO_LEN=15,7), the overlapped-phase schedulers (H.RT
and MR.RT) are required for adequate performance on the
remaining configurations, due to the effectiveness of the
optimization-based RT phase. The overlapped schedulers are
also faster, because they can oftenmeet the early-termination
condition faster.

Between the two schedulers which use overlapped phases,
the hybrid-phased scheduler (H.RT) is generally also faster
than its optimization-based counterpart, by as much as 10×
for FIFO_LEN=15 (at equivalent throughput), withmoremod-
est gains for FIFO_LEN=3 of around 1.5× (and with 4% better
throughput).
The hybrid approach is faster because the heuristic can

produce a better quality mapping (the input to the RT
phase), as it also considers timing constraints as part of its
own objective function. Finally, both overlapped schedulers
achieve much higher throughput than the state-of-the-art
MRT scheduler on both of the two harder configurations
(H.RT gets 9% higher throughput for FIFO_LEN=3 and 21%
higher throughput for FIFO_LEN=2).
Q6. How do the results change with scheduling time?:
Figure 13 shows a similar graph depicting the sensitivity
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Figure 13: Sensitivity of Scheduler Effectiveness to
maximum scheduling time. (FIFO_LEN decreases
from left to right bar.).

of throughput and scheduling time to maximum scheduling
time. The heuristic scheduler can only rarely make better use
of a longer scheduling time, presumably because it does not
narrow the search space over time. The joint scheduler also
cannot make up for its deficiencies with more time – it fails
to reach the average throughput of the overlapped sched-
ulers. Finally, while both the hybrid and optimization-based
overlapped schedulers improve with increased scheduling
time, the optimization-based scheduler spends much more
of its allocated time, even when it does not need to. This is
because the MR phase does not reason about timing, and so
cannot terminate based on whether the mismatch is zero.
Overall, the hybrid approach is still the best choice, even if
more scheduling time is acceptable.

Q7. How do trends vary across benchmarks?: Figure 14
shows the per-benchmark breakdown of the scheduling time,
maximum throughput, and achieved throughput from simu-
lation for the four different schedulers for the “very hard” ac-
celerator configuration (FIFO_LEN=2). The stochastic heuris-
tic (H) and joint (MRT) schedulers are more prone to finding
low-throughput schedules, thereby losing significant perfor-
mance – up to 4× worse on some workloads.

The other two algorithms fare better. In terms of solution
quality, the H.RT hybrid scheduler fares just slightly better
overall in terms of throughput, as compared to MR.RT. This
is because the stochastic scheduler seeds the hybrid with
a mapping which is known to have a low total mismatch
across all nodes, where the MR.RT scheduler just receives a
latency-optimized mapping from its first phase.
Q8. Does delay-mismatch correlate with perfor-
mance?: The bottom two graphs in Figure 14 show the
correlation between the scheduler’s view of throughput loss
due to delay-mismatch, and the actual performance loss
measured by the simulator. Note that we show the overall
performance in one bar for fft and qr, and that the hybrid
scheduler achieves up to 2× performance over MRT (on
fir). Overall, the trends between measured and predicted
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Figure 14: Per-benchmark breakdown of Scheduling
Time (Top), scheduler’s view of throughput (Middle),
and measured throughput relative to best case (bot-
tom) with FIFO_LEN=2.

performance are similar, which validates the schedulers’
abstraction of performance – using maximum delay-mismatch
as a proxy for throughput.
Results Summary: Overall, what we found was that the
overlapped-phase (MR.RT) and hybrid (H.RT) schedulers
were the most effective, even with highly resource-
constrained hardware. The primary difference is that MR.RT
produces schedules of lower performance on average (3-4%),
and takes longer, especially on easier problems or when the
maximum scheduling time is longer.

As far as the overall benefits, the scheduler enables hard-
ware/software codesign. Assuming a desired throughput re-
duction of less than 5%, the hybrid scheduler can be employed
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on a delay-FIFO size of down to 3. This means that the hard-
ware can be designed with 3 delay-FIFO slots instead of 15,
leading to 35% area savings.
Compared to the original optimization-based scheduler

(MRT), which took an average of 171 seconds for FIFO_LEN
3, and did not always produce a valid schedule, the hybrid
scheduler takes on average only 32 seconds (5× speedup),
and always produces a high-quality schedule.

8 RELATEDWORK
Heuristic Schedulers: There is a long history of heuristic
algorithms for resource-exposed architectures. A few exam-
ples are the BUG VLIW scheduler [18], its improved Unified
Assign and Schedule for clustered VLIWs [40], and the CARS
code-generation framework which combines cluster assign-
ment, register allocation, and instruction scheduling [25].
Also, fractional initiation intervals were previously utilized
for software pipelining on traditional VonNeumann archi-
tectures [3].
Many schedulers have been developed for shared-PE

CGRAs for both accelerators and general purpose ar-
chitectures. A prominent example is the edge-centric
modulo scheduler [43] and its extension for sub-cycle
scheduling [45]. Another example is the DRESC modulo
scheduling algorithm [31], which is based on simulated
annealing. Those targeting more general purpose processors
include the space-time scheduler [28] for RAW [54], the
multi-granular scheduler [32] for Wavescalar [53], and
SPS [17] and SPDI [33] for TRIPS [51]. Further work is
required to determine if phase-overlapping and hybrid
schedulers would be useful for shared-PE designs. Stochastic
iterative search techniques also seem plausible for these
architectures.
For dedicated-PE schedulers, one example [15] targets a

CGRA with PEs arranged in a tree [13]. From the domain
of deep neural networks acceleration is MAERI [26], which
targets a network structure called the "augmented reduction
tree". Also, it can be argued that systolic array scheduling is
another example [27, 57]. The dedicated-PE arrays targeted
here have a less flexible network than what this work targets.
Optimization-based Schedulers: Optimization-based al-
gorithms also have a rich history in the compiler space,
including VonNeumann architectures [24, 41], VLIW pro-
cessors [19], and multiprocessors [52].
Perhaps the most related work, besides the formulation

we build off of here [37, 39], is the MILP scheduling model
for the RAW spatial architecture [4]. They consider both ILP-
based techniques and heuristics, but do not consider phase-
overlapping of responsibilities, or combining heuristics and
optimization techniques. The spatial scheduling problem has
also been solved using program synthesis techniques [47].

Hardware Synthesis: Optimization techniques have been
extensively explored in the past for VLSI and CAD prob-
lems [5, 14, 23] for generating application-specific circuits.
The nature of these types of problems in the synthesis space
in terms of their size (much larger) and types of constraints
(typically less constrained) are quite different.

9 CONCLUSION
This work explored the challenge of instruction scheduling
on highly-efficient but restrictive dedicated-PE architectures,
and evaluated the effectiveness on a recent programmable
accelerator. We explored two main principles. The first was
overlapping scheduling phases to reduce the search space
complexity. The second was integrating heuristic and opti-
mization based schedulers to create a hybrid scheduler, each
solving the portion of the problem they are best suited for.
These two techniques enabled a faster scheduler by 5×, better
throughput, and codesign which could reduce the accelera-
tor’s area by 35%.

Overall, the results of this work demonstrate that problem-
specific heuristics, as well as optimization based algorithms
(which amounts to a branch and bound search) are compli-
mentary, and can be used together. Our insights into CGRA
architectures and their interaction with the scheduler can
enable aggressive hardware/software codesign, to allow for
even more efficient programmable accelerator designs for
the specialization era.
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